$\frac{1}{n}\prec1$, da man immer eine Konstante $c$ finden kann, für die ab einem $n$ alle weiteren Funktionswerte von $\frac{1}{n}$ unter $c \cdot\mathcal{O}(1)$ liegen.
$1\prec\log\log n$, da der Logarithmus schneller wächst als eine konstante Funktion und jeder Logarithmus langsamer wächst als eine polynomielle Funktion. Der doppelte Logarithmus wächst noch langsamer als der einfache Logarithmus.
$n \cdot\log n \prec n^{8}$, da $\frac{n^{8}}{n \cdot\log n}$ nach dem Kürzen gegen unendlich geht, weil jeder Logarithmus langsamer wächst als jede polynomielle Funktion.
Dies ist durch die Logarithmusgesetze einfach zu zeigen. $\log_{b}(n)$ kann demnach auch als $\frac{\log_{2}(n)}{\log_{2}(b)}$ dargestellt werden. Dabei geht dieser Term asymptotisch gegen $\log_{2}(n)$, da $\log_{2}(b)$ eine Konstante ist und daher nicht beachtet werden muss. Damit ist die Aussage gezeigt, dass $\log_{b}(n)$ für $b > 1$ asymptotisch genau so schnell wächst wie $\log_{2}(n)$.
Behauptung: $f \in\mathcal{O}(g)\Rightarrow g \in\omega(f)$\\
Diese Behauptung gilt nicht. Dies kann mithilfe der Definition der Landau-Symbole erklärt werden. $f \in\mathcal{O}(g)$ besagt, dass $f$ maximal so schnell wie $g$ wächst. Dabei ist auch der Fall enthalten, dass $f$ und $g$ gleich schnell wachsen.
Der zweite Teil der Behauptung erfordert jedoch, dass $g$ in jedem Fall schneller als $f$ wächst. Dies steht aber im Widerspruch zu dem ersten Teil der Behauptung. Damit ist die Behauptung widerlegt.
Denn für $c=1$ werden einfach $n+1$ Einsen aufsummiert. Die Summe $n+1$ wächst asymptotisch genau so schnell wie $n$, da die Konstante $1$ vernachlässigt werden kann.
Nun muss nur noch $\left(1+2^{-0.5}\right)$ mit $2^{0.5}$ verglichen werden. Da beide Terme Konstanten sind, kann man einfach deren Werte ausrechnen und vergleichen. Daher ergibt sich folgendes:
\begin{alignat*}{2}
\left(1 + 2^{-0.5}\right) &\geq& 2^{0.5}\\
\intertext{gerundet auf $5$ Nachkommastellen}
1.70710 &\geq& 1.41421
\end{alignat*}
Damit ist die Behauptung sowohl für den Induktionsanfang als auch für ein beliebiges $n$ gezeigt.
$X^{64}$ kann geschickter berechnet werden, wenn man die Ergebnisse von vorigen Multiplikationen speichert. Damit lässt sich $X^{64}$ auf diese Weise berechnen:\\
Auf eben gezeigte Weise kann man $X^{64}$ mit nur $6$ Multiplikationen ausrechnen. Interessanterweise gilt $2^{6}=64$. Müsste man nun eine andere 2-Potenz ausrechnen, dann wäre das Ergebnis ebenso schnell klar. Da im allgemeinen Fall $n$ aber irgendeine Zahl sein kann, ist es sinnvoll sich zum Beispiel $74$ anzusehen. Im Fall von $74$ würde es so weiter gehen:
\begin{alignat*}{3}
& X^{64}&\cdot& X^{8}&=& X^{72}\\
& X^{72}&\cdot& X^{2}&=& X^{74}
\end{alignat*}
Demnach würden bei $74$ acht Multiplikationen benötigt.
Daraus kann die allgemeine Formel für die Anzahl der Multiplikationen $F(n)$ gebildet werden:\\
\begin{alignat*}{2}
F(n) &=&\begin{cases}
0, &\text{wenn } n = 1\\
\lceil F(\frac{n}{2}) \rceil + 1, &\text{wenn } n > 1
\end{cases}
\end{alignat*}
Diese rekursive Formel könnte auch als Schleife dargestellt werden. Durch die Halbierung von n bei jedem Durchgang hat die Funktion eine logarithmische Laufzeit. Die Addition ist dabei irrelevant, wenn man sich das asymptotische Verhalten ansieht.
In 3b haben wir gezeigt, dass sich $X^{n}$ in $\mathcal{O}(\log n)$ Multiplikationen ausgerechnen lässt. Daraus lässt sich schließen, dass sich auch die 2x2 Matrix in $\star$ in logarithmischer Zeit errechnen lässt. Eine weitere Multiplikation macht dann auch keinen Unterschied mehr. Daher lässt sich $\star$ in logarithmischer Zeit lösen. Da jeder Logarithmus langsamer wächst und damit schneller ist als eine Potenzfunktion, ist das Matrizen-Verfahren damit echt schneller als das in der Vorlesung vorgestellte Verfahren.