\documentclass[10pt,a4paper,oneside,ngerman,numbers=noenddot]{scrartcl} \usepackage[T1]{fontenc} \usepackage[utf8]{inputenc} \usepackage[ngerman]{babel} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{paralist} \usepackage{gauss} \usepackage{pgfplots} \usepackage[locale=DE,exponent-product=\cdot,detect-all]{siunitx} \usepackage{tikz} \usetikzlibrary{matrix,fadings,calc,positioning,decorations.pathreplacing,arrows,decorations.markings} \usepackage{polynom} \polyset{style=C, div=:,vars=x} \pgfplotsset{compat=1.8} \pagenumbering{arabic} \def\thesection{\arabic{section})} \def\thesubsection{\alph{subsection})} \def\thesubsubsection{(\roman{subsubsection})} \makeatletter \renewcommand*\env@matrix[1][*\c@MaxMatrixCols c]{% \hskip -\arraycolsep \let\@ifnextchar\new@ifnextchar \array{#1}} \makeatother \begin{document} \author{Jim Martens (6420323)} \title{Hausaufgaben zum 6. Juni} \maketitle \section{} %1 \subsubsection{} %i \begin{alignat*}{2} \int \frac{x + 1}{x^{2} - x +6}\,dx &=& \int \frac{x}{x^{2} - x + 6}\,dx + \int \frac{1}{x^{2} -x + 6}\,dx \\ &=& \frac{1}{2}\int \frac{2x - 1 + 1}{x^{2} - x + 6}\,dx + \int \frac{1}{x^{2} -x + 6}\,dx \\ &=& \frac{1}{2}\int \frac{2x - 1}{x^{2} - x + 6}\,dx + \frac{1}{2}\int \frac{1}{x^{2} - x + 6}\,dx + \int \frac{1}{x^{2} -x + 6}\,dx \\ &=& \frac{1}{2} \cdot \ln |x^{2} - x + 6| + \frac{1}{2}\int \frac{1}{x^{2} - x + 6}\,dx + \int \frac{1}{x^{2} -x + 6}\,dx \end{alignat*} \begin{alignat*}{2} x^{2} - x + 6 &=& x^{2} - x + \frac{1}{4} + 6 - \frac{1}{4} \\ &=& \left( x - \frac{1}{2}\right)^{2} + 6 - \frac{1}{4} \end{alignat*} \begin{alignat*}{2} \intertext{Setze $c = 6 - \frac{1}{4}$. Substitution: $t = x - \frac{1}{2}$, $\frac{dt}{dx} = 1$ und $dx = dt$.} && \frac{1}{2} \cdot \ln |x^{2} - x + 6| + \frac{1}{2}\int \frac{1}{x^{2} - x + 6}\,dx + \int \frac{1}{x^{2} -x + 6}\,dx\\ &=& \frac{1}{2} \cdot \ln |x^{2} - x + 6| + \frac{1}{2}\int \frac{1}{\left( x - \frac{1}{2}\right)^{2} + c}\,dx + \int \frac{1}{\left( x - \frac{1}{2}\right)^{2} + c}\,dx \\ &=& \frac{1}{2} \cdot \ln |x^{2} - x + 6| + \frac{1}{2}\int \frac{1}{t^{2} + c}\,dt + \int \frac{1}{t^{2} + c}\,dt \end{alignat*} \begin{alignat*}{2} \intertext{Bestimmung Nullstellen des Nennerpolynoms} 0 &=& x^{2} - x + 6 \\ x_{1,2} &=& \frac{1}{2} \pm \sqrt{\left(\frac{1}{2}\right)^{2} - 6} \\ &=& \frac{1}{2} \pm \sqrt{- \frac{23}{4}} \end{alignat*} \begin{alignat*}{2} \intertext{Eine negative Wurzel kann nicht gelöst werden. Demnach gibt es keine Nullstellen. Setzen von $r = \sqrt{c}$. Dann ist $c = r^{2}$.} && \frac{1}{2} \cdot \ln |x^{2} - x + 6| + \frac{1}{2}\int \frac{1}{x^{2} - x + 6}\,dx + \int \frac{1}{x^{2} -x + 6}\,dx\\ &=& \frac{1}{2} \cdot \ln |x^{2} - x + 6| + \frac{1}{2}\int \frac{1}{t^{2} + r^{2}}\,dt + \int \frac{1}{t^{2} + r^{2}}\,dt \\ &=& \frac{1}{2} \cdot \ln |x^{2} - x + 6| + \frac{1}{2} \cdot \frac{1}{r} \cdot \arctan \left(\frac{t}{r} \right) + \frac{1}{r} \cdot \arctan \left(\frac{t}{r} \right) \\ &=& \frac{1}{2} \cdot \ln |x^{2} - x + 6| + \frac{1}{2} \cdot \frac{1}{\sqrt{c}} \cdot \arctan \left(\frac{t}{\sqrt{c}} \right) + \frac{1}{\sqrt{c}} \cdot \arctan \left(\frac{t}{\sqrt{c}} \right) \\ \intertext{Resubsitution} && \frac{1}{2} \cdot \ln |x^{2} - x + 6| + \frac{1}{2}\int \frac{1}{x^{2} - x + 6}\,dx + \int \frac{1}{x^{2} -x + 6}\,dx \\ &=& \frac{1}{2} \cdot \ln |x^{2} - x + 6| + \frac{1}{2} \cdot \frac{1}{\sqrt{c}} \cdot \arctan \left(\frac{x - \frac{1}{2}}{\sqrt{c}} \right) + \frac{1}{\sqrt{c}} \cdot \arctan \left(\frac{x - \frac{1}{2}}{\sqrt{c}} \right) \end{alignat*} \begin{alignat*}{2} \intertext{Probe:} && \left(\frac{1}{2} \cdot \ln |x^{2} - x + 6| + \frac{1}{2} \cdot \frac{1}{\sqrt{c}} \cdot \arctan \left(\frac{x - \frac{1}{2}}{\sqrt{c}} \right) + \frac{1}{\sqrt{c}} \cdot \arctan \left(\frac{x - \frac{1}{2}}{\sqrt{c}} \right)\right)' \\ &=& \left(\frac{1}{2} \cdot \ln |x^{2} - x + 6|\right)' + \left(\frac{1}{2} \cdot \frac{1}{\sqrt{c}} \cdot \arctan \left(\frac{x - \frac{1}{2}}{\sqrt{c}} \right)\right)' + \left(\frac{1}{\sqrt{c}} \cdot \arctan \left(\frac{x - \frac{1}{2}}{\sqrt{c}} \right)\right)' \\ &=& \frac{1}{2} \cdot \frac{2x - 1}{x^{2} - x + 6} + \frac{1}{2} \cdot \frac{1}{\sqrt{c}} \cdot \frac{1}{\left(\frac{x - \frac{1}{2}}{\sqrt{c}} \right)^{2} + 1} \cdot \left(\frac{x - \frac{1}{2}}{\sqrt{c}} \right)' + \frac{1}{\sqrt{c}} \cdot \frac{1}{\left(\frac{x - \frac{1}{2}}{\sqrt{c}} \right)^{2} + 1} \cdot \left(\frac{x - \frac{1}{2}}{\sqrt{c}} \right)' \\ &=& \frac{1}{2} \cdot \frac{2x - 1}{x^{2} - x + 6} + \frac{1}{2} \cdot \frac{1}{\sqrt{c}} \cdot \frac{1}{\sqrt{c}} \cdot \frac{1}{\frac{\left(x - \frac{1}{2}\right)^{2}}{c} + 1} \cdot \left(x - \frac{1}{2}\right)' + \frac{1}{\sqrt{c}} \cdot \frac{1}{\sqrt{c}} \cdot \frac{1}{\frac{\left(x - \frac{1}{2}\right)^{2}}{c} + 1} \cdot \left(x - \frac{1}{2}\right)' \\ &=& \frac{1}{2} \cdot \frac{2x - 1}{x^{2} - x + 6} + \frac{1}{2} \cdot \frac{1}{c} \cdot \frac{1}{\frac{\left(x - \frac{1}{2}\right)^{2}}{c} + 1} + \frac{1}{c} \cdot \frac{1}{\frac{\left(x - \frac{1}{2}\right)^{2}}{c} + 1} \\ &=& \frac{1}{2} \cdot \frac{2x - 1}{x^{2} - x + 6} + \frac{1}{2} \cdot \frac{1}{c\left(\frac{\left(x - \frac{1}{2}\right)^{2}}{c} + 1\right)} + \frac{1}{c\left(\frac{\left(x - \frac{1}{2}\right)^{2}}{c} + 1\right)} \\ &=& \frac{1}{2} \cdot \frac{2x - 1}{x^{2} - x + 6} + \frac{1}{2} \cdot \frac{1}{\left(x - \frac{1}{2}\right)^{2} + c} + \frac{1}{\left(x - \frac{1}{2}\right)^{2} + c} \\ &=& \frac{1}{2} \cdot \frac{2x - 1}{x^{2} - x + 6} + \frac{1}{2} \cdot \frac{1}{x^{2} - x + \frac{1}{4} + 6 - \frac{1}{4}} + \frac{1}{x^{2} - x + \frac{1}{4} + 6 - \frac{1}{4}} \\ &=& \frac{1}{2} \cdot \frac{2x - 1}{x^{2} - x + 6} + \frac{1}{2} \cdot \frac{1}{x^{2} - x + 6} + \frac{1}{x^{2} - x + 6} \\ &=& \frac{1}{2} \cdot \frac{2x - 1 + 1}{x^{2} - x + 6} + \frac{1}{x^{2} - x + 6} \\ &=& \frac{1}{2} \cdot \frac{2x}{x^{2} - x + 6} + \frac{1}{x^{2} - x + 6} \\ &=& \frac{x}{x^{2} - x + 6} + \frac{1}{x^{2} - x + 6} \\ &=& \frac{x + 1}{x^{2} - x + 6} \end{alignat*} \subsubsection{} %ii \begin{alignat*}{2} 0 &=& x^{2} - 4x + 4 \\ x_{1,2} &=& 2 \pm \sqrt{2^{2} - 4} \\ &=& 2 \pm \sqrt{0} \\ x_{1} = x_{2} &=& 2 \\ x^{2} - 4x + 4 &=& (x-2)(x-2) = (x-2)^{2} \end{alignat*} \begin{alignat*}{2} \frac{2x + 1}{x^{2} -4x +4} = \frac{2x + 1}{(x-2)^{2}} &=& \frac{A}{(x-2)^{2}} + \frac{B}{x-2} \\ 2x + 1 &=& \frac{A(x-2)^{2}}{(x-2)^{2}} + \frac{B(x-2)^{2}}{x-2} \\ &=& A + B(x-2) \\ &=& A + Bx -2B \\ &=& Bx - 2B + A \end{alignat*} \begin{alignat*}{2} \intertext{Vergleichen der Koeffizienten} B &=& 2 \\ -2B + A &=& 1 \\ -2 \cdot 2 + A &=& 1 \\ -4 + A &=& 1 \\ A &=& 5 \end{alignat*} \begin{alignat*}{2} \intertext{Partialbruchzerlegung:} \frac{2x+1}{x^{2}-4x+4} &=& \frac{5}{(x-2)^{2}} + \frac{2}{x-2} \end{alignat*} \begin{alignat*}{2} \intertext{Integrieren} && \int \frac{2x+1}{x^{2}-4x+4}\,dx \\ &=& \int \left(\frac{5}{(x-2)^{2}} + \frac{2}{x-2}\right)\,dx \\ &=& \int \frac{5}{(x-2)^{2}}\,dx + \int \frac{2}{x-2}\,dx \\ &=& 5 \int (x-2)^{-2}\,dx + 2 \int \frac{1}{x-2}\,dx \\ &=& -5 (x-2)^{-1} + 2 \cdot \ln |x-2| \end{alignat*} \begin{alignat*}{2} \intertext{Probe} && \left(-5 (x-2)^{-1} + 2 \cdot \ln |x-2|\right)' \\ &=& \left(-5 (x-2)^{-1}\right)' + \left(2 \cdot \ln |x-2|\right)' \\ &=& 5(x-2)^{-2} + \frac{2}{x-2} \\ &=& \frac{5}{(x-2)^{2}} + \frac{2}{x-2} \\ &=& \frac{5 + 2(x-2)}{(x-2)^{2}} \\ &=& \frac{5 + 2x -4)}{(x-2)^{2}} \\ &=& \frac{2x + 1}{x^{2} -4x +4} \end{alignat*} \subsubsection{} %iii \begin{alignat*}{2} \int \frac{4x + 1}{x^{2} + 4x +8}\,dx &=& \int \frac{4x}{x^{2} + 4x + 8}\,dx + \int \frac{1}{x^{2} + 4x + 8}\,dx \\ &=& 2\int \frac{2x +4 - 4}{x^{2} + 4x + 8}\,dx + \int \frac{1}{x^{2} + 4x + 8}\,dx \\ &=& 2\int \frac{2x + 4}{x^{2} + 4x + 8}\,dx - 8\int \frac{1}{x^{2} + 4x + 8}\,dx + \int \frac{1}{x^{2} + 4x + 8}\,dx \\ &=& 2 \cdot \ln |x^{2} + 4x + 8| - 8\int \frac{1}{x^{2} + 4x + 8}\,dx + \int \frac{1}{x^{2} + 4x + 8}\,dx \end{alignat*} \begin{alignat*}{2} x^{2} + 4x + 8 &=& x^{2} + 4x + \frac{16}{4} + 8 - \frac{16}{4} \\ &=& (x +2)^{2} + 4 \end{alignat*} \begin{alignat*}{2} \intertext{Setze $c = 4$. Substitution: $t = x + 2$, $\frac{dt}{dx} = 1$ und $dx = dt$.} && 2 \cdot \ln |x^{2} + 4x + 8| - 8\int \frac{1}{x^{2} + 4x + 8}\,dx + \int \frac{1}{x^{2} + 4x + 8}\,dx\\ &=& 2 \cdot \ln |x^{2} + 4x + 8| -8\int \frac{1}{(x+2)^{2} + c}\,dx + \int \frac{1}{(x+2)^{2} + c}\,dx \\ &=& 2 \cdot \ln |x^{2} + 4x + 8| -8\int \frac{1}{t^{2} + c}\,dt + \int \frac{1}{t^{2} + c}\,dt \end{alignat*} \begin{alignat*}{2} \intertext{Bestimmung Nullstellen des Nennerpolynoms} 0 &=& x^{2} + 4x + 8 \\ x_{1,2} &=& -2 \pm \sqrt{(2)^{2} - 8} \\ &=& -2 \pm \sqrt{-4} \end{alignat*} \begin{alignat*}{2} \intertext{Eine negative Wurzel kann nicht gelöst werden. Demnach gibt es keine Nullstellen. Setzen von $r = \sqrt{c}$. Dann ist $c = r^{2}$.} && 2 \cdot \ln |x^{2} + 4x + 8| - 8\int \frac{1}{x^{2} + 4x + 8}\,dx + \int \frac{1}{x^{2} + 4x + 8}\,dx\\ &=& 2 \cdot \ln |x^{2} + 4x + 8| -8\int \frac{1}{t^{2} + r^{2}}\,dt + \int \frac{1}{t^{2} + r^{2}}\,dt \\ &=& 2 \cdot \ln |x^{2} + 4x + 8| -8 \cdot \frac{1}{r} \cdot \arctan \left(\frac{t}{r} \right) + \frac{1}{r} \cdot \arctan \left(\frac{t}{r} \right) \\ &=& 2 \cdot \ln |x^{2} + 4x + 8| -8 \cdot \frac{1}{\sqrt{c}} \cdot \arctan \left(\frac{t}{\sqrt{c}} \right) + \frac{1}{\sqrt{c}} \cdot \arctan \left(\frac{t}{\sqrt{c}} \right) \\ \intertext{Resubsitution} && 2 \cdot \ln |x^{2} + 4x + 8| - 8\int \frac{1}{x^{2} + 4x + 8}\,dx + \int \frac{1}{x^{2} + 4x + 8}\,dx \\ &=& 2 \cdot \ln |x^{2} + 4x + 8| -8 \cdot \frac{1}{\sqrt{c}} \cdot \arctan \left(\frac{x+2}{\sqrt{c}} \right) + \frac{1}{\sqrt{c}} \cdot \arctan \left(\frac{x+2}{\sqrt{c}} \right) \end{alignat*} \begin{alignat*}{2} \intertext{Probe:} && \left(2 \cdot \ln |x^{2} + 4x + 8| -8 \cdot \frac{1}{\sqrt{c}} \cdot \arctan \left(\frac{x+2}{\sqrt{c}} \right) + \frac{1}{\sqrt{c}} \cdot \arctan \left(\frac{x+2}{\sqrt{c}} \right)\right)' \\ &=& \left(2 \cdot \ln |x^{2} + 4x + 8|\right)' + \left(-6 \cdot \frac{1}{\sqrt{c}} \cdot \arctan \left(\frac{x+2}{\sqrt{c}} \right)\right)' + \left(\frac{1}{\sqrt{c}} \cdot \arctan \left(\frac{x+2}{\sqrt{c}} \right)\right)' \\ &=& 2 \cdot \frac{2x + 4}{x^{2} + 4x + 8} - 8 \cdot \frac{1}{\sqrt{c}} \cdot \frac{1}{\left(\frac{x + 2}{\sqrt{c}} \right)^{2} + 1} \cdot \left(\frac{x + 2}{\sqrt{c}} \right)' + \frac{1}{\sqrt{c}} \cdot \frac{1}{\left(\frac{x + 2}{\sqrt{c}} \right)^{2} + 1} \cdot \left(\frac{x + 2}{\sqrt{c}} \right)' \\ &=& 2 \cdot \frac{2x + 4}{x^{2} + 4x + 8} - 8 \cdot \frac{1}{\sqrt{c}} \cdot \frac{1}{\sqrt{c}} \cdot \frac{1}{\frac{(x + 2)^{2}}{c} + 1} \cdot (x + 2)' + \frac{1}{\sqrt{c}} \cdot \frac{1}{\sqrt{c}} \cdot \frac{1}{\frac{(x + 2)^{2}}{c} + 1} \cdot (x + 2)' \\ &=& 2 \cdot \frac{2x + 4}{x^{2} + 4x + 8} - 8 \cdot \frac{1}{c} \cdot \frac{1}{\frac{(x + 2)^{2}}{c} + 1} + \frac{1}{c} \cdot \frac{1}{\frac{(x + 2)^{2}}{c} + 1} \\ &=& 2 \cdot \frac{2x + 4}{x^{2} + 4x + 8} - 8 \cdot \frac{1}{c\left(\frac{(x + 2)^{2}}{c} + 1\right)} + \frac{1}{c\left(\frac{(x + 2)^{2}}{c} + 1\right)} \\ &=& 2 \cdot \frac{2x + 4}{x^{2} + 4x + 8} - 8 \cdot \frac{1}{(x + 2)^{2} + c} + \frac{1}{(x + 2)^{2} + c} \\ &=& 2 \cdot \frac{2x + 4}{x^{2} + 4x + 8} - 8 \cdot \frac{1}{x^{2} + 4x + 4 + 4} + \frac{1}{x^{2} + 4x + 4 + 4} \\ &=& 2 \cdot \frac{2x + 4}{x^{2} + 4x + 8} - 2\cdot \frac{4}{x^{2} + 4x + 8} + \frac{1}{x^{2} + 4x + 8} \\ &=& 2 \cdot \frac{2x + 4 - 4}{x^{2} + 4x + 8} + \frac{1}{x^{2} + 4x + 8} \\ &=& 2 \cdot \frac{2x}{x^{2} + 4x + 8} + \frac{1}{x^{2} + 4x + 8} \\ &=& \frac{4x + 1}{x^{2} + 4x + 8} \end{alignat*} \section{} %2 \subsection{} %a \begin{alignat*}{2} f(x) &=& e^{-x} \\ f'(x) &=& -e^{-x} \\ f''(x) &=& e^{-x} \\ f'''(x) &=& -e^{-x} \\ \intertext{Wendepunkte bestimmen} f''(x) &=& 0 \\ e^{-x} &=& 0 \\ -x &=& \ln 0 \Rightarrow \text{$\ln 0$ ist nicht definiert, daher kann es keine Wendepunkte für $e^{-x}$ geben.} \end{alignat*} \begin{alignat*}{2} g(x) &=& \frac{1}{1+x} \\ g'(x) &=& -(x+1)^{-2} \\ g''(x) &=& 2(x+1)^{-3} \\ g'''(x) &=& -6(x+1)^{-4} \\ \intertext{Wendepunkte bestimmen} g''(x) &=& 0 \\ 2(x+1)^{-3} &=& 0 \\ \frac{2}{(x+1)^{3}} &=& 0 \Rightarrow \text{Die Funktion wird niemals $0$. Daher kann es keine Wendepunkte geben.} \end{alignat*} \begin{alignat*}{2} h(x) &=& \frac{1}{1+x^{2}} \\ h'(x) &=& -(1+x^{2})^{-2} \cdot 2x \\ h''(x) &=& 2(1+x^{2})^{-3} \cdot 2x \cdot 2x -(1+x^{2})^{-2} \cdot 2 \\ &=& 2(1+x^{2})^{-3} \cdot 4x^{2} - 2(1+x^{2})^{-2} \\ h'''(x) &=& -6(1+x^{2})^{-4} \cdot 2x \cdot 4x^{2} + 2(1+x^{2})^{-3} \cdot 8x + 4(1+x^{2})^{-3} \cdot 2x \\ &=& -6(1+x^{2})^{-4} \cdot 8x^{3} + 2(1+x^{2})^{-3} \cdot 8x + 4(1+x^{2})^{-3} \cdot 2x \\ \intertext{Wendepunkte bestimmen} h''(x) &=& 0 \\ 2(1+x^{2})^{-3} \cdot 4x^{2} - 2(1+x^{2})^{-2} &=& 0 \\ \intertext{Es ergibt sich das Ergebnis:} x = \frac{1}{\sqrt{3}} \end{alignat*} \begin{alignat*}{2} \intertext{Probe} 2(1+\left(\frac{1}{\sqrt{3}}\right)^{2})^{-3} \cdot 4\left(\frac{1}{\sqrt{3}}\right)^{2} - 2(1+\left(\frac{1}{\sqrt{3}}\right)^{2})^{-2} &=& 0 \\ 2(1+\frac{1}{3})^{-3} \cdot 4 \cdot \frac{1}{3} - 2(1+\frac{1}{3})^{-2} &=& 0 \\ \frac{2 \cdot \frac{4}{3}}{\left(\frac{4}{3}\right)^{3}} - \frac{2}{\left(\frac{4}{3}\right)^{2}} &=& 0 \\ \frac{2 \cdot \frac{4}{3}}{\frac{64}{27}} - \frac{2}{\frac{16}{9}} &=& 0 \\ 2 \cdot \frac{4}{3} \cdot \frac{27}{64} - 2 \cdot \frac{9}{16} &=& 0 \\ \frac{4}{3} \cdot \frac{54}{64} - \frac{18}{16} &=& 0 \\ \frac{4}{3} \cdot \frac{27}{32} - \frac{9}{8} &=& 0 \\ \intertext{27 mit 3 kürzen und 32 mit 4 kürzen} 1 \cdot \frac{9}{8} - \frac{9}{8} &=& 0 \\ \frac{9 - 9}{8} &=& 0 \\ 0 &=& 0 \end{alignat*} \begin{tikzpicture}[>=stealth] \begin{axis}[ ymin=0,ymax=5, x=1cm, y=1cm, axis x line=middle, axis y line=middle, axis line style=->, xlabel={$x$}, ylabel={$y$}, xmin=0,xmax=5 ] \addplot[no marks, black, -] expression[domain=0:5,samples=100]{e^(-x)} node[pos=0.65,anchor=north]{}; \node at (axis cs: 1,0.8) {f}; \end{axis} \end{tikzpicture} \begin{tikzpicture}[>=stealth] \begin{axis}[ ymin=0,ymax=5, x=1cm, y=1cm, axis x line=middle, axis y line=middle, axis line style=->, xlabel={$x$}, ylabel={$y$}, xmin=0,xmax=5 ] \addplot[no marks, black, -] expression[domain=0:5,samples=100]{1/(1+x)} node[pos=0.65,anchor=north]{}; \node at (axis cs: 1,0.8) {g}; \end{axis} \end{tikzpicture}\\ \begin{tikzpicture}[>=stealth] \begin{axis}[ ymin=0,ymax=5, x=1cm, y=1cm, axis x line=middle, axis y line=middle, axis line style=->, xlabel={$x$}, ylabel={$y$}, xmin=0,xmax=5 ] \addplot[no marks, black, -] expression[domain=0:5,samples=100]{1/(1+x^2)} node[pos=0.65,anchor=north]{}; \node at (axis cs: 2,0.8) {h}; \draw (axis cs:0.577350269,0.75) circle (2pt); \end{axis} \end{tikzpicture} \subsection{} %b \begin{alignat*}{2} \intertext{Integrieren von f} \int\limits_{0}^{b} e^{-x}\,dx &=& \left[ -e^{-x}\right]_{0}^{b} \\ &=& -e^{-b} + e^{0} \\ &=& -\frac{1}{e^{b}} + 1 \rightarrow 1 \text{ für } b \rightarrow \infty \\ &\Longrightarrow & \lim\limits_{b \rightarrow \infty} \int\limits_{0}^{b} e^{-x}\,dx = 1 \end{alignat*} \begin{alignat*}{2} \intertext{Integrieren von g} \int\limits_{0}^{b} \frac{1}{1+x}\,dx &=& \left[\ln |1+x|\right]_{0}^{b} \\ &=& \ln |1 + b| - \ln |1 + 0| \\ &=& \ln |1 + b| \rightarrow \infty \text{ für } b \rightarrow \infty \\ &\Longrightarrow & \lim\limits_{b \rightarrow \infty} \int\limits_{0}^{b} \frac{1}{1+x}\,dx = \infty \end{alignat*} \begin{alignat*}{2} \intertext{Integrieren von h} \int\limits_{0}^{b} \frac{1}{1+x^{2}} \,dx &=& \left[ \arctan x \right]_{0}^{b} \\ &=& \arctan b - \arctan 0 \\ &=& \arctan b \rightarrow \frac{\pi}{2} \text{ für } b \rightarrow \infty \\ &\Longrightarrow & \lim\limits_{b \rightarrow \infty} \int\limits_{0}^{b} \frac{1}{1+x^{2}}\,dx = \frac{\pi}{2} \end{alignat*} \subsection{} %c \begin{tikzpicture}[>=stealth] \begin{axis}[ ymin=0,ymax=2, x=2cm, y=2cm, axis x line=middle, axis y line=middle, axis line style=->, xlabel={$x$}, ylabel={$y$}, xmin=-1,xmax=1 ] \addplot[no marks, black, -] expression[domain=-1:1,samples=100]{1/sqrt(1-x^2)} node[pos=0.65,anchor=north]{}; \node at (axis cs: 2,0.8) {f}; \end{axis} \end{tikzpicture} \begin{alignat*}{2} \intertext{Integrieren von f} \int\limits_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}}\,dx &=& \left[\arcsin x\right]_{-1}^{1} \\ &=& \arcsin 1 - \arcsin (-1) \\ &=& \frac{\pi}{2} + \frac{\pi}{2}\\ &=& \pi \end{alignat*} \section{} %3 \begin{alignat*}{2} \intertext{$n=4$} \int\limits_{0}^{1} \sin x \,dx &\approx & \frac{1}{8}\left(\sin(0) + 2\sin\left(\frac{1}{4}\right) + 2\sin\left(\frac{1}{2}\right) + 2\sin\left(\frac{3}{4}\right) + \sin(1)\right) \\ &\approx & 0.4573009376 \end{alignat*} \begin{alignat*}{2} \intertext{$n=5$} \int\limits_{0}^{1} \sin x \,dx &\approx & \frac{1}{10}\left(\sin(0) + 2\sin\left(\frac{1}{5}\right) + 2\sin\left(\frac{2}{5}\right) + 2\sin\left(\frac{3}{5}\right) + 2\sin\left(\frac{4}{5}\right) + \sin(1)\right) \\ &\approx & 0.4581643460 \end{alignat*} \begin{alignat*}{2} \intertext{$n=10$} \int\limits_{0}^{1} \sin x \,dx &\approx \begin{split} \frac{1}{20}\left(\sin(0) + 2\sin\left(\frac{1}{10}\right) + 2\sin\left(\frac{1}{5}\right) + 2\sin\left(\frac{3}{10}\right) + 2\sin\left(\frac{2}{5}\right) + 2\sin\left(\frac{1}{2}\right)\right.\\ + \left. 2\sin\left(\frac{3}{5}\right) + 2\sin\left(\frac{7}{10}\right) + 2\sin\left(\frac{4}{5}\right) + 2\sin\left(\frac{9}{10}\right) + \sin(1)\right)\end{split} \\ &\approx & 0.4593145489 \end{alignat*} \section{} %4 \subsection{} %a \begin{alignat*}{2} f(1) &=& 10 \cdot e^{-\frac{2}{5}} \\ &\approx & 6.7032 \\ f(2) &=& 10 \cdot 2 \cdot e^{-frac{2}{5}\cdot 2} \\ &=& 20 \cdot e^{-\frac{4}{5}} \\ &\approx & 8.9866 \\ f(6) &=& 10 \cdot 6 \cdot e^{-\frac{2}{5}\cdot 6}\\ &=& 60 \cdot e^{-\frac{12}{5}} \\ &\approx & 5.4431 \\ f(12) &=& 10 \cdot 12 \cdot e^{-\frac{2}{5}\cdot 12} \\ &=& 120 \cdot e^{-\frac{24}{5}} \\ &\approx & 0.9876 \\ f(24) &=& 10 \cdot 24 \cdot e^{-\frac{2}{5}\cdot 24} \\ &=& 240 \cdot e^{-\frac{48}{5}} \\ &=& 0.0163 \end{alignat*} \subsection{} %b \begin{alignat*}{2} f'(t) &=& 10 \cdot e^{-\frac{2}{5}t} - 10t \cdot e^{-\frac{2}{5}t} \cdot \frac{2}{5} \\ &=& 10 \cdot e^{-\frac{2}{5}t} - \frac{20}{5}t \cdot e^{-\frac{2}{5}t} \\ &=& 10 \cdot e^{-\frac{2}{5}t} - 4t \cdot e^{-\frac{2}{5}t} \\ &=& (10 - 4t) \cdot e^{-\frac{2}{5}t} \\ &=& \frac{10-4t}{e^{\frac{2}{5}t}} \\ f''(x) &=& \left((10 - 4t) \cdot e^{-\frac{2}{5}t}\right)' \\ &=& (10 - 4t)' \cdot e^{-\frac{2}{5}t} + (10 - 4t) \cdot \left(e^{-\frac{2}{5}t}\right)' \\ &=& -4 \cdot e^{-\frac{2}{5}t} + (10 - 4t) \cdot e^{-\frac{2}{5}t} \cdot \left(-\frac{2}{5}\right) \\ \intertext{Berechnung der Nullstelle(n) von $f'(x)$} f'(x) &=& 0 \\ \intertext{$f'(x)$ mit Zähler ersetzen, da der über Nullstelle bestimmt} 10-4t &=& 0 \\ 10 &=& 4t \\ \frac{5}{2} &=& t \\ \intertext{Einsetzen in $f(x)$} f\left(\frac{5}{2}\right) &=& 10 \cdot \frac{5}{2} \cdot e^{-\frac{2}{5} \cdot \frac{5}{2}} \\ &=& 25 \cdot e^{-1} \\ &\approx & 9.1970 \end{alignat*} \subsection{} %c \begin{alignat*}{2} \int 10t \cdot e^{-\frac{2}{5}t}\,dx &=& -\frac{5}{2}\cdot e^{-\frac{2}{5}t} \cdot 10t - \int -\frac{5}{2} \cdot e^{-\frac{2}{5}t} \cdot 10\,dx \\ &=& -\frac{5}{2}\cdot e^{-\frac{2}{5}t} \cdot 10t + 25 \int e^{-\frac{2}{5}t}\,dx \\ &=& -\frac{5}{2}\cdot e^{-\frac{2}{5}t} \cdot 10t - \frac{5}{2} \cdot e^{-\frac{2}{5}t} \cdot 25 \\ &=& -\frac{5}{2}\cdot e^{-\frac{2}{5}t} \cdot \left( 10t + 25\right) \\ \frac{1}{6} \int\limits_{0}^{6} 10t \cdot e^{-\frac{2}{5}t}\,dx &=& \frac{1}{6} \cdot \left[-\frac{5}{2}\cdot e^{-\frac{2}{5}t} \cdot (10t + 25)\right]_{0}^{6} \\ &=& \frac{1}{6}\left(-\frac{5}{2}\cdot e^{-\frac{2}{5} \cdot 6} \cdot ( 10 \cdot 6 + 25) - \left(-\frac{5}{2}\cdot e^{-\frac{2}{5} \cdot 0} \cdot ( 10 \cdot 0 + 25)\right)\right) \\ &=& \frac{1}{6}\left(-\frac{5}{2}\cdot e^{-\frac{12}{5}} \cdot 85 + \frac{5}{2}\cdot e^{0} \cdot 25\right) \\ &=& \frac{1}{6}\left(-\frac{425}{2}\cdot e^{-\frac{12}{5}} + \frac{125}{2}\right) \\ &\approx & 7.2037 \end{alignat*} \subsection{} %d \begin{alignat*}{2} \intertext{Die Stammfunktion wurde bereits in c) berechnet. Daher setze ich direkt die Werte entsprechend ein.} \frac{1}{6} \int\limits_{6}^{12} 10t \cdot e^{-\frac{2}{5}t}\,dx &=& \frac{1}{6} \cdot \left[-\frac{5}{2}\cdot e^{-\frac{2}{5}t} \cdot (10t + 25)\right]_{6}^{12} \\ &=& \frac{1}{6}\left(-\frac{5}{2}\cdot e^{-\frac{2}{5} \cdot 12} \cdot ( 10 \cdot 12 + 25) - \left(-\frac{5}{2}\cdot e^{-\frac{2}{5} \cdot 6} \cdot ( 10 \cdot 6 + 25)\right)\right) \\ &=& \frac{1}{6}\left(-\frac{5}{2}\cdot e^{-\frac{24}{5}} \cdot 145 + \frac{5}{2}\cdot e^{-\frac{12}{5}} \cdot 85\right) \\ &=& \frac{1}{6}\left(-\frac{725}{2}\cdot e^{-\frac{24}{5}} + \frac{425}{2}\cdot e^{-\frac{12}{5}}\right) \\ &\approx & 2.7157 \end{alignat*} \subsection{} %e \begin{alignat*}{2} f'(t) &=& \frac{10-4t}{e^{\frac{2}{5}t}} \\ f''(t) &=& -4 \cdot e^{-\frac{2}{5}t} + (10 - 4t) \cdot e^{-\frac{2}{5}t} \cdot \left(-\frac{2}{5}\right) \\ &=& e^{-\frac{2}{5}t} \cdot \left(-4 + (10 - 4t) \cdot \left(-\frac{2}{5}\right) \right) \\ &=& e^{-\frac{2}{5}t} \cdot \left(-4 - 4 + \frac{8}{5}t \right) \\ &=& e^{-\frac{2}{5}t} \cdot \left(-8 + \frac{8}{5}t \right) \\ &=& \frac{-8 + \frac{8}{5}t}{ e^{-\frac{2}{5}t}} \\ f'''(t) &=& \left(e^{-\frac{2}{5}t} \cdot \left(-8 + \frac{8}{5}t \right)\right)' \\ &=& e^{-\frac{2}{5}t} \cdot \left(-\frac{2}{5} \right) \cdot \left(-8 + \frac{8}{5}t \right) + e^{-\frac{2}{5}t} \cdot \left(-8 + \frac{8}{5}t \right)' \\ &=& e^{-\frac{2}{5}t} \cdot \left(\frac{16}{5} - \frac{16}{25}t \right) + e^{-\frac{2}{5}t} \cdot \left(\frac{8}{5}\right) \\ &=& e^{-\frac{2}{5}t} \cdot \left(\frac{16}{5} - \frac{16}{25}t + \frac{8}{5}\right) \\ &=& e^{-\frac{2}{5}t} \cdot \left(\frac{24}{5} - \frac{16}{25}t\right) \\ \intertext{Nullstelle(n) von $f''(x)$ berechnen} f''(x) &=& 0 \\ \intertext{$f''(x)$ mit dem Zähler ersetzen, da der für die Nullstelle zuständig ist} -8 + \frac{8}{5}t &=& 0 \\ \frac{8}{5} &=& 8 \\ t &=& 5 \\ f'''(5) &=& e^{-\frac{2}{5} \cdot 5} \cdot \left(\frac{24}{5} - \frac{16}{25} \cdot 5\right) \\ &=& e^{-2} \cdot \left(\frac{24}{5} - \frac{16}{5}\right) \\ &=& e^{-2} \cdot \frac{8}{5} > 0 \Rightarrow \text{Minimum} \\ f(5) &=& 10 \cdot 5 \cdot e^{-\frac{2}{5} \cdot 5} \\ &=& 50 \cdot e^{-2} \\ &\approx & 6.7668 \end{alignat*} \begin{tikzpicture}[>=stealth] \begin{axis}[ ymin=0,ymax=10, x=1em, y=1em, axis x line=middle, axis y line=middle, axis line style=->, xlabel={$t$}, ylabel={$f(t)$}, xmin=0,xmax=24 ] \addplot[no marks, black, -] expression[domain=0:24,samples=100]{10*x*e^(-(2/5)*x)} node[pos=0.65,anchor=north]{}; \draw (axis cs:5,6.766764162) circle (2pt); \end{axis} \end{tikzpicture} \section{} %5 \subsection{} %a \begin{alignat*}{2} h(x) &=& (x^{2}+1)^{\cos(x)} \\ &=& e^{\ln \left((x^{2}+1)^{\cos(x)}\right)}\\ &=& e^{\cos(x) \cdot \ln (x^{2}+1)} \\ h'(x) &=& e^{\cos(x) \cdot \ln (x^{2}+1)} \cdot \left(\cos(x) \cdot \ln (x^{2}+1)\right)' \\ &=& e^{\cos(x) \cdot \ln (x^{2}+1)} \cdot \left((\cos(x))' \cdot \ln (x^{2}+1) + \cos(x) \cdot (\ln (x^{2}+1))'\right) \\ &=& e^{\cos(x) \cdot \ln (x^{2}+1)} \cdot \left(-\sin(x) \cdot \ln (x^{2}+1) + \cos(x) \cdot \frac{(x^{2}+1)'}{x^{2}+1}\right) \\ &=& e^{\cos(x) \cdot \ln (x^{2}+1)} \cdot \left(-\sin(x) \cdot \ln (x^{2}+1) + \cos(x) \cdot \frac{2x}{x^{2}+1}\right) \\ &=& (x^{2}+1)^{\cos(x)} \cdot \left(-\sin(x) \cdot \ln (x^{2}+1) + \cos(x) \cdot \frac{2x}{x^{2}+1}\right) \end{alignat*} \subsection{} %b \begin{alignat*}{2} t &=& \sqrt{\frac{x}{4} + 3} \\ t^{2} &=& \frac{x}{4} + 3 \\ t^{2} - 3 &=& \frac{x}{4} \\ 4t^{2} - 12 &=& x \\ 8t &=& \frac{dx}{dt} \\ 8t\,dt &=& dx \end{alignat*} \begin{alignat*}{2} \int \sin \left(\sqrt{\frac{x}{4} + 3}\right) &\Rightarrow & \int \sin (t) \cdot 8t\,dt \\ \int \sin (t) \cdot 8t\,dt &=& -\cos(t) \cdot 8t - \int (-\cos (t) \cdot 8)\,dt \\ &=& -\cos(t) \cdot 8t + 8\int \cos(t)\,dt \\ &=& -\cos(t) \cdot 8t + 8 \cdot \sin(t) \\ \int \sin \left(\sqrt{\frac{x}{4} + 3}\right) &=& -\cos \left(\sqrt{\frac{x}{4} + 3} \right) \cdot 8 \cdot \left(\sqrt{\frac{x}{4} + 3} \right) + 8 \cdot \sin \left(\sqrt{\frac{x}{4} + 3}\right) \end{alignat*} \subsection{} %c \begin{alignat*}{2} g(x) = x^{2}-x-6 &=& 0 \\ x_{1,2} &=& \frac{1}{2} \pm \sqrt{\frac{1}{4} + 6 } \\ &=& \frac{1}{2} \pm \sqrt{\frac{25}{4}} \\ &=& \frac{1}{2} \pm \frac{5}{2} \\ x_{1} &=& \frac{6}{2} = 3 \\ x_{2} &=& -\frac{4}{2} = -2 \\ g(x) = x^{2}-x-6 &=& (x-3)(x+2) \end{alignat*} \begin{alignat*}{2} \frac{3x+2}{x^{2}-x-6} = \frac{1}{(x-3)(x+2)} &=& \frac{A}{x-3} + \frac{B}{x+2} \\ &=& \frac{A(x+2) + B(x-3)}{(x-3)(x+2)} \\ &=& \frac{Ax + Bx + 2A - 3B}{(x-3)(x+2)} \\ &=& \frac{(A+B)x + 2A - 3B}{(x-3)(x+2)} \\ A + B &=& 3 \\ 2A - 3B &=& 2 \\ A &=& 3 - B \\ 2(3-B) - 3B &=& 2 \\ 6 - 2B - 3B &=& 2 \\ -5B &=& -4 \\ 5B &=& 4 \\ B &=& \frac{4}{5}\\ A &=& 3 - \frac{4}{5} \\ &=& \frac{11}{5} \\ \frac{3x+2}{x^{2}-x-6} &=& \frac{11}{5} \cdot \frac{1}{x-3} + \frac{4}{5} \cdot \frac{1}{x+2} \end{alignat*} \begin{alignat*}{2} \int \frac{3x+2}{x^{2}-x-6}\,dx &=& \int \frac{11}{5} \cdot \frac{1}{x-3}\,dx + \int \frac{4}{5} \cdot \frac{1}{x+2}\,dx \\ &=& \frac{11}{5} \int \frac{1}{x-3}\,dx + \frac{4}{5} \int \frac{1}{x+2}\,dx \\ &=& \frac{11}{5} \cdot \ln |x-3| + \frac{4}{5} \cdot \ln |x+2| \end{alignat*} \subsection{} %d \begin{alignat*}{2} g(x) = x^{2} + 8x + 16 &=& (x+4)^{2} \\ \frac{x+1}{(x+4)^{2}} &=& \frac{A}{(x+4)^{2}} + \frac{B}{x+4} \\ &=& \frac{A + B(x+4)}{(x+4)^{2}} \\ &=& \frac{A + Bx + 4B}{(x+4)^{2}} \\ &=& \frac{Bx + A + 4B}{(x+4)^{2}} \\ \Rightarrow B &=&1 \\ A + 4B &=& 1 \\ A &=& -4B + 1 \\ A &=& -4 + 1 \\ A &=& -3 \\ \frac{x+1}{x^{2}+8x+16} &=& -\frac{3}{(x+4)^{2}} + \frac{1}{x+4} \end{alignat*} \begin{alignat*}{2} \int \frac{x+1}{x^{2}+8x+16} \,dx &=& \int -\frac{3}{(x+4)^{2}}\,dx + \int \frac{1}{x+4}\,dx \\ &=& -3\int (x+4)^{-2}\,dx + \int \frac{1}{x+4}\,dx \\ &=& -3\left(-(x+4)^{-1}\right)+ \ln |x+4| \\ &=& 3(x+4)^{-1} + \ln |x+4| \end{alignat*} \end{document}