\documentclass[10pt,a4paper,oneside,ngerman,numbers=noenddot]{scrartcl} \usepackage[T1]{fontenc} \usepackage[utf8]{inputenc} \usepackage[ngerman]{babel} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{paralist} \usepackage{gauss} \usepackage{pgfplots} \usepackage[locale=DE,exponent-product=\cdot,detect-all]{siunitx} \usepackage{tikz} \usetikzlibrary{matrix,fadings,calc,positioning,decorations.pathreplacing,arrows,decorations.markings} \usepackage{polynom} \polyset{style=C, div=:,vars=x} \pgfplotsset{compat=1.8} \pagenumbering{arabic} % ensures that paragraphs are separated by empty lines \parskip 12pt plus 1pt minus 1pt \parindent 0pt % define how the sections are rendered \def\thesection{\arabic{section})} \def\thesubsection{\alph{subsection})} \def\thesubsubsection{(\roman{subsubsection})} % some matrix magic \makeatletter \renewcommand*\env@matrix[1][*\c@MaxMatrixCols c]{% \hskip -\arraycolsep \let\@ifnextchar\new@ifnextchar \array{#1}} \makeatother \begin{document} \author{Jan Branitz (6326955), Jim Martens (6420323),\\ Stephan Niendorf (6242417)} \title{Hausaufgaben zum 28. Oktober} \maketitle \section{} %1 \subsection{} %a \textbf{Aufgabe:} Lösen Sie das folgende LP-Problem mit dem Simplexverfahren: \begin{alignat*}{4} \text{maximiere}\; & x_{1} &+& 6x_{2} &-& 4x_{3} && \\ \multicolumn{8}{l}{\text{unter den Nebenbedingungen}} && \\ \;& 2x_{1} && &+& x_{3} &\leq & 5 \\ \;-& x_{1} &+& 3x_{2} &-& 2x_{3} &\leq & 2 \\ \;& && x_{2} &-& x_{3} &\leq & 2 \\ \multicolumn{6}{r}{$x_{1}, x_{2}, x_{3}$} \,&\geq &\, 0 \end{alignat*} \textbf{Lösung.} \underline{Starttableau}: \begin{alignat*}{5} x_{4} \,&=&\, 5 \,&-&\, 2x_{1} && &-&\, x_{3} \\ x_{5} \,&=&\, 2 \,&+&\, x_{1} \,&-&\, 3x_{2} \,&+&\, 2x_{3} \\ x_{6} \,&=&\, 2 && &-&\, x_{2} \,&+&\, x_{3} \\ \cline{1 - 9} z &=& && x_{1} \,&+&\, 6x_{2} \,&-&\, 4x_{3} \end{alignat*} \underline{1. Iteration}: Eingangsvariable: $x_{2}$\\ Ausgangsvariable: $x_{5}$ Es folgt \begin{alignat*}{2} 3x_{2} \,&=&&\, 2 + x_{1} + 2x_{3} - x_{5} \\ x_{2} \,&=&&\, \frac{2}{3} + \frac{1}{3}x_{1} + \frac{2}{3}x_{3} - \frac{1}{3}x_{5} \\ x_{4} \,&=&&\, 5 - 2x_{1} - x_{3} \\ x_{6} \,&=&&\, 2 - \left(\frac{2}{3} + \frac{1}{3}x_{1} + \frac{2}{3}x_{3} - \frac{1}{3}x_{5}\right) + x_{3} \\ &=&&\, 2 - \frac{2}{3} - \frac{1}{3}x_{1} - \frac{2}{3}x_{3} + \frac{1}{3}x_{5} + x_{3} \\ &=&&\, \frac{4}{3} - \frac{1}{3}x_{1} + \frac{1}{3}x_{3} + \frac{1}{3}x_{5} \\ z \,&=&&\, x_{1} + 6\left(\frac{2}{3} + \frac{1}{3}x_{1} + \frac{2}{3}x_{3} - \frac{1}{3}x_{5}\right) - 4x_{3} \\ &=&&\, x_{1} + 4 + 2x_{1} + 4x_{3} - 2x_{5} - 4x_{3} \\ &=&&\, 4 + 3x_{1} - 2x_{5} \end{alignat*} \underline{Ergebnis der 1. Iteration}: \begin{alignat*}{5} x_{2} \,&=&\, \frac{2}{3} \,&+&\, \frac{1}{3}x_{1} \,&+&\, \frac{2}{3}x_{3} \,&-&\, \frac{1}{3}x_{5} \\ x_{4} \,&=&\, 5 \,&-&\, 2x_{1} \,&-&\, x_{3} && \\ x_{6} \,&=&\, \frac{4}{3} \,&-&\, \frac{1}{3}x_{1} \,&+&\, \frac{1}{3}x_{3} \,&+&\, \frac{1}{3}x_{5} \\ \cline{1 - 9} z &=& 4 \,&+&\, 3x_{1} && &-& 2x_{5} \end{alignat*} \underline{2. Iteration}: Eingangsvariable: $x_{1}$ \\ Ausgangsvariable: $x_{4}$ Es folgt \begin{alignat*}{2} 2x_{1} &=&& 5 - x_{3} - x_{4} \\ x_{1} &=&& \frac{5}{2} - \frac{1}{2}x_{3} - \frac{1}{2}x_{4} \\ x_{2} &=&& \frac{2}{3} + \frac{1}{3}\left(\frac{5}{2} - \frac{1}{2}x_{3} - \frac{1}{2}x_{4}\right) + \frac{2}{3}x_{3} - \frac{1}{3}x_{5} \\ &=&& \frac{3}{2} - \frac{1}{6}x_{3} - \frac{1}{6}x_{4} + \frac{2}{3}x_{3} - \frac{1}{3}x_{5} \\ &=&& \frac{3}{2} + \frac{1}{2}x_{3} - \frac{1}{6}x_{4} - \frac{1}{3}x_{5} \\ x_{6} &=&& \frac{4}{3} - \frac{1}{3}\left(\frac{5}{2} - \frac{1}{2}x_{3} - \frac{1}{2}x_{4}\right) + \frac{1}{3}x_{3} + \frac{1}{3}x_{5} \\ &=&& \frac{1}{2} + \frac{1}{6}x_{3} + \frac{1}{6}x_{4} + \frac{1}{3}x_{3} + \frac{1}{3}x_{5} \\ &=&& \frac{1}{2} + \frac{1}{2}x_{3} + \frac{1}{6}x_{4} + \frac{1}{3}x_{5} \\ z &=&& 4 + 3\left(\frac{5}{2} - \frac{1}{2}x_{3} - \frac{1}{2}x_{4}\right) - 2x_{5} \\ &=&& \frac{23}{2} - \frac{3}{2}x_{3} - \frac{3}{2}x_{4} - 2x_{5} \\ &=&& \frac{23}{2} - \frac{3}{2}x_{3} - \frac{3}{2}x_{4} - 2x_{5} \end{alignat*} \underline{Ergebnis der 2. Iteration}: \begin{alignat*}{5} x_{1} \,&=&\, \frac{5}{2} \,&-&\, \frac{1}{2}x_{3} \,&-&\, \frac{1}{2}x_{4} && \\ x_{2} \,&=&\, \frac{3}{2} \,&+&\, \frac{1}{2}x_{3} \,&-&\, \frac{1}{6}x_{4} \,&-&\, \frac{1}{3}x_{5} \\ x_{6} \,&=&\, \frac{1}{2} \,&+&\, \frac{1}{2}x_{3} \,&+&\, \frac{1}{6}x_{4} \,&+&\, \frac{1}{3}x_{5} \\ \cline{1 - 9} z &=& \frac{23}{2} \,&-&\, \frac{3}{2}x_{3} \,&-&\, \frac{3}{2}x_{4} \,&-&\, 2x_{5} \end{alignat*} Dieses Tableau liefert die optimale Lösung $x_{1} = \frac{5}{2}, x_{2} = \frac{3}{2}, x_{3} = 0$ mit $z = \frac{23}{2}$. \underline{Startlösung ("`zulässige Basislösung am Anfang"')}: \[ x_{1} = 0, x_{2} = 0, x_{3} = 0, x_{4} = 5, x_{5} = 2, x_{6} = 2 \text{ mit } z = 0 \] \underline{Zulässige Basislösung nach der 1. Iteration}: \[ x_{1} = 0, x_{2} = \frac{2}{3}, x_{3} = 0, x_{4} = 5, x_{5} = 0, x_{6} = \frac{4}{3} \text{ mit } z = 4 \] \underline{Zulässige Basislösung nach der 2. Iteration}: \[ x_{1} = \frac{5}{2}, x_{2} = \frac{3}{2}, x_{3} = 0, x_{4} = 0, x_{5} = 0, x_{6} = \frac{1}{2} \text{ mit } z = \frac{23}{2} \] \subsection{} %b \textbf{Aufgabe:} Lösen Sie das folgende LP-Problem mit dem Simplexverfahren: \begin{alignat*}{4} \text{maximiere}\; -& 5x_{1} &+& 11x_{2} &-& 5x_{3} && \\ \multicolumn{8}{l}{\text{unter den Nebenbedingungen}} && \\ \;-& x_{1} &+& 3x_{2} &-& 4x_{3} &\leq & 2 \\ \;& x_{1} &+& 5x_{2} &+& 3x_{3} &\leq & 6 \\ \;-& x_{1} &+& 3x_{2} &+& 3x_{3} &\leq &\, 4 \\ \;& x_{1} &-& x_{2} &+& 3x_{3} &\leq &\, 2 \\ \multicolumn{6}{r}{$x_{1}, x_{2}, x_{3}$} \,&\geq &\, 0 \end{alignat*} \textbf{Lösung.} \underline{Starttableau}: \begin{alignat*}{5} x_{4} \,&=&\, 2 \,&+&\, x_{1} \,&-&\, 3x_{2} \,&+&\, 4x_{3} \\ x_{5} \,&=&\, 6 \,&-&\, x_{1} \,&-&\, 5x_{2} \,&-&\, 3x_{3} \\ x_{6} \,&=&\, 4 \,&+&\, x_{1} \,&-&\, 3x_{2} \,&-&\, 3x_{3} \\ x_{7} \,&=&\, 2 \,&-&\, x_{1} \,&+&\, x_{2} \,&-&\, 3x_{3} \\ \cline{1 - 9} z \,&=&\, &-& 5x_{1} \,&+&\, 11x_{2} \,&-&\, 5x_{3} \end{alignat*} \underline{1. Iteration}: Eingangsvariable: $x_{2}$\\ Ausgangsvariable: $x_{4}$ Es folgt \begin{alignat*}{2} 3x_{2} \,&=&&\, 2 + x_{1} + 4x_{3} - x_{4} \\ x_{2} \,&=&&\, \frac{2}{3} + \frac{1}{3}x_{1} + \frac{4}{3}x_{3} - \frac{1}{3}x_{4} \\ x_{5} \,&=&&\, 6 - x_{1} - 5\left(\frac{2}{3} + \frac{1}{3}x_{1} + \frac{4}{3}x_{3} - \frac{1}{3}x_{4}\right) - 3x_{3} \\ &=&& 6 - x_{1} - \frac{10}{3} - \frac{5}{3}x_{1} - \frac{20}{3}x_{3} + \frac{5}{3}x_{4} - 3x_{3} \\ &=&& \frac{8}{3} - \frac{8}{3}x_{1} - \frac{29}{3}x_{3} + \frac{5}{3}x_{4} \\ x_{6} \,&=&&\, 4 + x_{1} - 3\left(\frac{2}{3} + \frac{1}{3}x_{1} + \frac{4}{3}x_{3} - \frac{1}{3}x_{4}\right) - 3x_{3} \\ &=&&\, 4 + x_{1} - 2 - x_{1} - 4x_{3} + x_{4} - 3x_{3} \\ &=&&\, 2 - 7x_{3} + x_{4} \\ x_{7} &=&& 2 - x_{1} + \frac{2}{3} + \frac{1}{3}x_{1} + \frac{4}{3}x_{3} - \frac{1}{3}x_{4} - 3x_{3} \\ &=&& \frac{8}{3} - \frac{2}{3}x_{1} - \frac{5}{3}x_{3} - \frac{1}{3}x_{4} \\ z \,&=&&\, - 5x_{1} + 11\left(\frac{2}{3} + \frac{1}{3}x_{1} + \frac{4}{3}x_{3} - \frac{1}{3}x_{4}\right) - 5x_{3} \\ &=&&\, -5x_{1} + \frac{22}{3} + \frac{11}{3}x_{1} + \frac{44}{3}x_{3} - \frac{11}{3}x_{4} - 5x_{3} \\ &=&&\, \frac{22}{3} - \frac{4}{3}x_{1} + \frac{29}{3}x_{3} - \frac{11}{3}x_{4} \end{alignat*} \underline{Ergebnis der 1. Iteration}: \begin{alignat*}{5} x_{2} \,&=&\, \frac{2}{3} \,&+&\, \frac{1}{3}x_{1} \,&+&\, \frac{4}{3}x_{3} \,&-&\, \frac{1}{3}x_{4} \\ x_{5} \,&=&\, \frac{8}{3} \,&-&\, \frac{8}{3}x_{1} \,&-&\, \frac{29}{3}x_{3} \,&+&\, \frac{5}{3}x_{4} \\ x_{6} \,&=&\, 2 && \,&-&\, 7x_{3} \,&+&\, x_{4} \\ x_{7} \,&=&\, \frac{8}{3} \,&-&\, \frac{2}{3}x_{1} \,&-&\, \frac{5}{3}x_{3} \,&-&\, \frac{1}{3}x_{4} \\ \cline{1 - 9} z \,&=&\, \frac{22}{3} \,&-&\, \frac{4}{3}x_{1} \,&+&\, \frac{29}{3}x_{3} \,&-&\, \frac{11}{3}x_{4} \end{alignat*} \underline{2. Iteration}: Eingangsvariable: $x_{3}$ \\ Ausgangsvariable: $x_{5}$ Es folgt \begin{alignat*}{2} \frac{29}{3}x_{3} &=&& \frac{8}{3} - \frac{8}{3}x_{1} + \frac{5}{3}x_{4} - x_{5} \\ x_{3} &=&& \frac{8}{29} - \frac{8}{29}x_{1} + \frac{5}{29}x_{4} - \frac{3}{29}x_{5} \\ x_{2} &=&& \frac{2}{3} + \frac{1}{3}x_{1} + \frac{4}{3}\left(\frac{8}{29} - \frac{8}{29}x_{1} + \frac{5}{29}x_{4} - \frac{3}{29}x_{5}\right) - \frac{1}{3}x_{4} \\ &=&& \frac{2}{3} + \frac{1}{3}x_{1} + \frac{32}{87} - \frac{32}{87}x_{1} + \frac{20}{87}x_{4} - \frac{4}{29}x_{5} - \frac{1}{3}x_{4} \\ &=&& \frac{30}{29} - \frac{1}{29}x_{1} - \frac{1}{29}x_{4} - \frac{4}{29}x_{5} \\ x_{6} &=&& 2 - 7\left(\frac{8}{29} - \frac{8}{29}x_{1} + \frac{5}{29}x_{4} - \frac{3}{29}x_{5}\right) + x_{4} \\ &=&& 2 - \frac{56}{29} + \frac{56}{29}x_{1} - \frac{35}{29}x_{4} + \frac{21}{29}x_{5} + x_{4} \\ &=&& \frac{2}{29} + \frac{56}{29}x_{1} - \frac{6}{29}x_{4} + \frac{21}{29}x_{5} \\ x_{7} &=&& \frac{8}{3} - \frac{2}{3}x_{1} - \frac{5}{3}\left(\frac{8}{29} - \frac{8}{29}x_{1} + \frac{5}{29}x_{4} - \frac{3}{29}x_{5}\right) - \frac{1}{3}x_{4} \\ &=&& \frac{8}{3} - \frac{2}{3}x_{1} - \frac{40}{87} + \frac{40}{87}x_{1} - \frac{25}{87}x_{4} + \frac{5}{29}x_{5} - \frac{1}{3}x_{4} \\ &=&& \frac{64}{29} - \frac{6}{29}x_{1} - \frac{18}{29}x_{4} + \frac{5}{29}x_{5} \\ z &=&& \frac{22}{3} - \frac{4}{3}x_{1} + \frac{29}{3}\left(\frac{8}{29} - \frac{8}{29}x_{1} + \frac{5}{29}x_{4} - \frac{3}{29}x_{5}\right) - \frac{11}{3}x_{4} \\ &=&& \frac{22}{3} - \frac{4}{3}x_{1} + \frac{8}{3} - \frac{8}{3}x_{1} + \frac{5}{3}x_{4} - x_{5} - \frac{11}{3}x_{4} \\ &=&& 10 + \frac{4}{3}x_{1} - 2x_{4} - x_{5} \end{alignat*} \underline{Ergebnis der 2. Iteration}: \begin{alignat*}{5} x_{3} \,&=&\, \frac{8}{29} \,&-&\, \frac{8}{29}x_{1} \,&+&\, \frac{5}{29}x_{4} \,&-&\, \frac{3}{29}x_{5} \\ x_{2} \,&=&\, \frac{30}{29} \,&-&\, \frac{1}{29}x_{1} \,&-&\, \frac{1}{29}x_{4} \,&-&\, \frac{4}{29}x_{5} \\ x_{6} \,&=&\, \frac{2}{29} \,&+&\, \frac{56}{29}x_{1} \,&-&\, \frac{6}{29}x_{4} \,&+&\, \frac{21}{29}x_{5} \\ x_{7} \,&=&\, \frac{64}{29} \,&-&\, \frac{6}{29}x_{1} \,&-&\, \frac{18}{29}x_{4} \,&+&\, \frac{5}{29}x_{5} \\ \cline{1 - 9} z \,&=&\, 10 \,&+&\, \frac{4}{3}x_{1} \,&-&\, 2x_{4} \,&-&\, x_{5} \end{alignat*} \underline{3. Iteration}: Eingangsvariable: $x_{1}$\\ Ausgangsvariable: $x_{3}$ Es folgt \begin{alignat*}{2} \frac{8}{29}x_{1} &=&& \frac{8}{29} + \frac{5}{29}x_{4} - \frac{3}{29}x_{5} - x_{3} \\ x_{1} &=&& 1 + \frac{5}{8}x_{4} - \frac{3}{8}x_{5} - \frac{29}{8}x_{3} \\ x_{2} &=&& \frac{30}{29} - \frac{1}{29}\left(1 + \frac{5}{8}x_{4} - \frac{3}{8}x_{5} - \frac{29}{8}x_{3}\right) - \frac{1}{29}x_{4} - \frac{4}{29}x_{5} \\ &=&& \frac{30}{29} - \frac{1}{29} - \frac{5}{232}x_{4} + \frac{3}{232}x_{5} + \frac{1}{8}x_{3} - \frac{1}{29}x_{4} - \frac{4}{29}x_{5} \\ &=&& 1 - \frac{13}{232}x_{4} - \frac{1}{8}x_{5} + \frac{1}{8}x_{3} \\ x_{6} &=&& \frac{2}{29} + \frac{56}{29}\left(1 + \frac{5}{8}x_{4} - \frac{3}{8}x_{5} - \frac{29}{8}x_{3}\right) - \frac{6}{29}x_{4} + \frac{21}{29}x_{5} \\ &=&& \frac{2}{29} + \frac{56}{29} + \frac{35}{29}x_{4} - \frac{21}{29}x_{5} - 7x_{3} - \frac{6}{29}x_{4} + \frac{21}{29}x_{5} \\ &=&& 2 + x_{4} - 7x_{3} \\ x_{7} &=&& \frac{64}{29} - \frac{6}{29}\left(1 + \frac{5}{8}x_{4} - \frac{3}{8}x_{5} - \frac{29}{8}x_{3}\right) - \frac{18}{29}x_{4} + \frac{5}{29}x_{5} \\ &=&& \frac{64}{29} - \frac{6}{29} - \frac{15}{116}x_{4} + \frac{18}{232}x_{5} + \frac{3}{4}x_{3} - \frac{18}{29}x_{4} + \frac{5}{29}x_{5} \\ &=&& 2 - \frac{3}{4}x_{4} + \frac{1}{4}x_{5} + \frac{3}{4}x_{3} \\ z &=&& 10 + \frac{4}{3}\left(1 + \frac{5}{8}x_{4} - \frac{3}{8}x_{5} - \frac{29}{8}x_{3}\right) - 2x_{4} - x_{5} \\ &=&& 10 + \frac{4}{3} + \frac{5}{6}x_{4} - \frac{1}{2}x_{5} - \frac{29}{6}x_{3} - 2x_{4} - x_{5} \\ &=&& \frac{34}{3} - \frac{7}{6}x_{4} - \frac{3}{2}x_{5} - \frac{29}{6}x_{3} \end{alignat*} \underline{Ergebnis der 3. Iteration}: \begin{alignat*}{5} x_{1} \,&=&\, 1 \,&+&\, \frac{5}{8}x_{4} \,&-&\, \frac{3}{8}x_{5} \,&-&\, \frac{29}{8}x_{3} \\ x_{2} \,&=&\, 1 \,&-&\, \frac{13}{232}x_{4} \,&-&\, \frac{1}{8}x_{5} \,&+&\, \frac{1}{8}x_{3} \\ x_{6} \,&=&\, 2 \,&+&\, x_{4} && \,&-&\, 7x_{3} \\ x_{7} \,&=&\, 2 \,&-&\, \frac{3}{4}x_{4} \,&+&\, \frac{1}{4}x_{5} \,&+&\, \frac{3}{4}x_{3} \\ \cline{1 - 9} z \,&=&\, \frac{34}{3} \,&-&\, \frac{7}{6}x_{4} \,&-&\, \frac{3}{2}x_{5} \,&-&\, \frac{29}{6}x_{3} \end{alignat*} Dieses Tableau liefert die optimale Lösung $x_{1} = 1, x_{2} = 1, x_{3} = 0$ mit $z = \frac{34}{3}$. \underline{Startlösung ("`zulässige Basislösung am Anfang"')}: \[ x_{1} = 0, x_{2} = 0, x_{3} = 0, x_{4} = 2, x_{5} = 6, x_{6} = 4, x_{7} = 2 \text{ mit } z = 0 \] \underline{Zulässige Basislösung nach der 1. Iteration}: \[ x_{1} = 0, x_{2} = \frac{2}{3}, x_{3} = 0, x_{4} = 0, x_{5} = \frac{8}{3}, x_{6} = 2, x_{7} = \frac{8}{3} \text{ mit } z = \frac{22}{3} = 7\frac{1}{3} \] \underline{Zulässige Basislösung nach der 2. Iteration}: \[ x_{1} = 0, x_{2} = \frac{30}{29}, x_{3} = \frac{8}{29}, x_{4} = 0, x_{5} = 0, x_{6} = 2, x_{7} = \frac{64}{29} \text{ mit } z = 10 \] \underline{Zulässige Basislösung nach der 3. Iteration}: \[ x_{1} = 1, x_{2} = 1, x_{3} = 0, x_{4} = 0, x_{5} = 0, x_{6} = 2, x_{7} = 2 \text{ mit } z = \frac{34}{3} = 11\frac{1}{3} \] % % 2 startet hier % % \section{} %2 \textbf{Aufgabe:} Lösen Sie das folgende LP-Problem mit dem Simplexverfahren: \begin{alignat*}{5} \text{maximiere}\; & x_{1} &-& 9x_{2} &-& 11x_{3} &+& 3x_{4} && \\ \multicolumn{10}{l}{\text{unter den Nebenbedingungen}} && \\ \;& x_{1} &+& x_{2} &+& 3x_{3} &+& x_{4} &\leq & 3 \\ \;-& x_{1} &-& 3x_{2} &-& 7x_{3} &+& x_{4} &\leq & 1 \\ \multicolumn{8}{r}{$x_{1}, x_{2}, x_{3}, x_{4}$} \,&\geq &\, 0 \end{alignat*} \textbf{Lösung.} \underline{Starttableau}: \begin{alignat*}{6} x_{5} \,&=&\, 3 \,&-&\, x_{1} \,&-&\, x_{2} \,&-&\, 3x_{3} \,&-&\, x_{4} \\ x_{6} \,&=&\, 1 \,&+&\, x_{1} \,&+&\, 3x_{2} \,&+&\, 7x_{3} \,&-&\, x_{4} \\ \cline{1 - 11} z \,&=&\, && x_{1} \,&-&\, 9x_{2} \,&-&\, 11x_{3} \,&+&\, 3x_{4} \end{alignat*} \underline{1. Iteration}: Eingangsvariable: $x_{4}$\\ Ausgangsvariable: $x_{6}$ Es folgt \begin{alignat*}{2} x_{4} &=&& 1 + x_{1} + 3x_{2} + 7x_{3} - x_{6} \\ x_{5} &=&& 3 - x_{1} - x_{2} - 3x_{3} - \left(1 + x_{1} + 3x_{2} + 7x_{3} - x_{6}\right) \\ &=&& 3 - x_{1} - x_{2} - 3x_{3} - 1 - x_{1} - 3x_{2} - 7x_{3} + x_{6} \\ &=&& 2 - 2x_{1} - 4x_{2} - 10x_{3} + x_{6} \\ z &=&& x_{1} - 9x_{2} - 11x_{3} + 3\left(1 + x_{1} + 3x_{2} + 7x_{3} - x_{6}\right) \\ &=&& x_{1} - 9x_{2} - 11x_{3} + 3 + 3x_{1} + 9x_{2} + 21x_{3} - 3x_{6} \\ &=&& 3 + 4x_{1} + 10x_{3} - 3x_{6} \end{alignat*} \underline{Ergebnis der 1. Iteration}: \begin{alignat*}{6} x_{4} \,&=&\, 1 \,&+&\, x_{1} \,&+&\, 3x_{2} \,&+&\, 7x_{3} \,&-&\, x_{6} \\ x_{5} \,&=&\, 2 \,&-&\, 2x_{1} \,&-&\, 4x_{2} \,&-&\, 10x_{3} \,&+&\, x_{6} \\ \cline{1 - 11} z \,&=&\, 3 \,&+&\, 4x_{1} && \,&+&\, 10x_{3} \,&-&\, 3x_{6} \end{alignat*} \underline{2. Iteration}: Eingangsvariable: $x_{3}$ \\ Ausgangsvariable: $x_{5}$ Es folgt \begin{alignat*}{2} 10x_{3} &=&& 2 - 2x_{1} - 4x_{2} + x_{6} - x_{5} \\ x_{3} &=&& \frac{1}{5} - \frac{1}{5}x_{1} - \frac{2}{5}x_{2} + \frac{1}{10}x_{6} - \frac{1}{10}x_{5} \\ x_{4} &=&& 1 + x_{1} + 3x_{2} + 7\left(\frac{1}{5} - \frac{1}{5}x_{1} - \frac{2}{5}x_{2} + \frac{1}{10}x_{6} - \frac{1}{10}x_{5}\right) - x_{6} \\ &=&& 1 + x_{1} + 3x_{2} + \frac{7}{5} - \frac{7}{5}x_{1} - \frac{14}{5}x_{2} + \frac{7}{10}x_{6} - \frac{7}{10}x_{5} - x_{6} \\ &=&& \frac{12}{5} - \frac{2}{5}x_{1} + \frac{1}{5}x_{2} - \frac{3}{10}x_{6} - \frac{7}{10}x_{5} \\ z &=&& 3 + 4x_{1} + 10\left(\frac{1}{5} - \frac{1}{5}x_{1} - \frac{2}{5}x_{2} + \frac{1}{10}x_{6} - \frac{1}{10}x_{5}\right) - 3x_{6} \\ &=&& 3 + 4x_{1} + 2 - 2x_{1} - 4x_{2} + x_{6} - x_{5} - 3x_{6} \\ &=&& 5 + 2x_{1} - 4x_{2} - 2x_{6} - x_{5} \end{alignat*} \underline{Ergebnis der 2. Iteration}: \begin{alignat*}{6} x_{3} \,&=&\, \frac{1}{5} \,&-&\, \frac{1}{5}x_{1} \,&-&\, \frac{2}{5}x_{2} \,&+&\, \frac{1}{10}x_{6} \,&-&\, \frac{1}{10}x_{5} \\ x_{4} \,&=&\, \frac{12}{5} \,&-&\, \frac{2}{5}x_{1} \,&+&\, \frac{1}{5}x_{2} \,&-&\, \frac{3}{10}x_{6} \,&-&\, \frac{7}{10}x_{5} \\ \cline{1 - 11} z \,&=&\, 5 \,&+&\, 2x_{1} \,&-&\, 4x_{2} \,&-&\, 2x_{6} \,&-&\, x_{5} \end{alignat*} \underline{3. Iteration}: Eingangsvariable: $x_{1}$\\ Ausgangsvariable: $x_{3}$ Es folgt \begin{alignat*}{2} \frac{1}{5}x_{1} &=&& \frac{1}{5} - \frac{2}{5}x_{2} + \frac{1}{10}x_{6} - \frac{1}{10}x_{5} - x_{3} \\ x_{1} &=&& 1 - 2x_{2} + \frac{1}{2}x_{6} - \frac{1}{2}x_{5} - 5x_{3} \\ x_{4} &=&& \frac{12}{5} - \frac{2}{5}\left(1 - 2x_{2} + \frac{1}{2}x_{6} - \frac{1}{2}x_{5} - 5x_{3}\right) + \frac{1}{5}x_{2} - \frac{3}{10}x_{6} - \frac{7}{10}x_{5} \\ &=&& \frac{12}{5} - \frac{2}{5} + \frac{4}{5}x_{2} - \frac{1}{5}x_{6} + \frac{1}{5}x_{5} + 2x_{3} + \frac{1}{5}x_{2} - \frac{3}{10}x_{6} - \frac{7}{10}x_{5} \\ &=&& 2 + x_{2} - \frac{1}{2}x_{6} - \frac{1}{2}x_{5} + 2x_{3} \\ z &=&& 5 + 2\left(1 - 2x_{2} + \frac{1}{2}x_{6} - \frac{1}{2}x_{5} - 5x_{3}\right) - 4x_{2} - 2x_{6} - x_{5} \\ &=&& 5 + 2 - 4x_{2} + x_{6} - x_{5} - 10x_{3} - 4x_{2} - 2x_{6} - x_{5} \\ &=&& 7 - 8x_{2} - x_{6} - 2x_{5} - 10x_{3} \end{alignat*} \underline{Ergebnis der 3. Iteration}: \begin{alignat*}{6} x_{1} \,&=&\, 1 \,&-&\, 2x_{2} \,&+&\, \frac{1}{2}x_{6} \,&-&\, \frac{1}{2}x_{5} \,&-&\, 5x_{3} \\ x_{4} \,&=&\, 2 \,&+&\, x_{2} \,&-&\, \frac{1}{2}x_{6} \,&-&\, \frac{1}{2}x_{5} \,&+&\, 2x_{3} \\ \cline{1 - 11} z \,&=&\, 7 \,&-&\, 8x_{2} \,&-&\, x_{6} \,&-&\, 2x_{5} \,&-&\, 10x_{3} \end{alignat*} Dieses Tableau liefert die optimale Lösung $x_{1} = 1, x_{2} = 0, x_{3} = 0$ mit $z = 7$. \underline{Startlösung ("`zulässige Basislösung am Anfang"')}: \[ x_{1} = 0, x_{2} = 0, x_{3} = 0, x_{4} = 2, x_{5} = 3, x_{6} = 1 \text{ mit } z = 0 \] \underline{Zulässige Basislösung nach der 1. Iteration}: \[ x_{1} = 0, x_{2} = \frac{2}{3}, x_{3} = 0, x_{4} = 1, x_{5} = 2, x_{6} = 0 \text{ mit } z = 3 \] \underline{Zulässige Basislösung nach der 2. Iteration}: \[ x_{1} = 0, x_{2} = 0, x_{3} = \frac{1}{5}, x_{4} = \frac{12}{5}, x_{5} = 0, x_{6} = 2 \text{ mit } z = 5 \] \underline{Zulässige Basislösung nach der 3. Iteration}: \[ x_{1} = 1, x_{2} = 0, x_{3} = 0, x_{4} = 2, x_{5} = 0, x_{6} = 0 \text{ mit } z = 7 \] \end{document}