mirror of https://github.com/2martens/uni.git
MATH2-Inf-3: Aufgabe 2a korrigiert.
This commit is contained in:
parent
f6bf670444
commit
cda788a5db
|
@ -202,7 +202,7 @@ Stephan Niendorf (6242417)}
|
||||||
|
|
||||||
\underline{Starttableau}:
|
\underline{Starttableau}:
|
||||||
\begin{alignat*}{5}
|
\begin{alignat*}{5}
|
||||||
x_{3} \,&=&\, -4 \,&-&\, x_{1} \,&+&\, x_{2} \,&+&\, x_{0} \\
|
x_{3} \,&=&\, -4 \,&+&\, x_{1} \,&+&\, x_{2} \,&+&\, x_{0} \\
|
||||||
x_{4} \,&=&\, 2 \,&-&\, x_{1} \,&-&\, 2x_{2} \,&+&\, x_{0} \\
|
x_{4} \,&=&\, 2 \,&-&\, x_{1} \,&-&\, 2x_{2} \,&+&\, x_{0} \\
|
||||||
x_{5} \,&=&\, -1 \,&+&\, x_{1} \,&-&\, x_{2} \,&+&\, x_{0} \\ \cline{1 - 9}
|
x_{5} \,&=&\, -1 \,&+&\, x_{1} \,&-&\, x_{2} \,&+&\, x_{0} \\ \cline{1 - 9}
|
||||||
w &=& && && \,&-&\, x_{0}
|
w &=& && && \,&-&\, x_{0}
|
||||||
|
@ -215,55 +215,75 @@ Stephan Niendorf (6242417)}
|
||||||
|
|
||||||
Es folgt
|
Es folgt
|
||||||
\begin{alignat*}{2}
|
\begin{alignat*}{2}
|
||||||
-x_{0} \,&=&&\, -4 - x_{1} + x_{2} - x_{3} \\
|
-x_{0} \,&=&&\, -4 + x_{1} + x_{2} - x_{3} \\
|
||||||
x_{0} \,&=&&\, 4 + x_{1} - x_{2} + x_{3} \\
|
x_{0} \,&=&&\, 4 - x_{1} - x_{2} + x_{3} \\
|
||||||
x_{4} \,&=&&\, 2 - x_{1} - 2x_{2} + \left(4 + x_{1} - x_{2} + x_{3}\right) \\
|
x_{4} \,&=&&\, 2 - x_{1} - 2x_{2} + \left(4 - x_{1} - x_{2} + x_{3}\right) \\
|
||||||
&=&&\, 2 - x_{1} - 2x_{2} + 4 + x_{1} - x_{2} + x_{3} \\
|
&=&&\, 2 - x_{1} - 2x_{2} + 4 - x_{1} - x_{2} + x_{3} \\
|
||||||
&=&&\, 6 - 3x_{2} + x_{3} \\
|
&=&&\, 6 - 2x_{1} - 3x_{2} + x_{3} \\
|
||||||
x_{5} \,&=&&\, -1 + x_{1} - x_{2} + \left(4 + x_{1} - x_{2} + x_{3}\right) \\
|
x_{5} \,&=&&\, -1 + x_{1} - x_{2} + \left(4 - x_{1} - x_{2} + x_{3}\right) \\
|
||||||
&=&&\, -1 + x_{1} - x_{2} + 4 + x_{1} - x_{2} + x_{3} \\
|
&=&&\, -1 + x_{1} - x_{2} + 4 - x_{1} - x_{2} + x_{3} \\
|
||||||
&=&&\, 3 + 2x_{1} - 2x_{2} + x_{3} \\
|
&=&&\, 3 - 2x_{2} + x_{3} \\
|
||||||
w \,&=&&\, -\left(4 + x_{1} - x_{2} + x_{3}\right) \\
|
w \,&=&&\, -\left(4 - x_{1} - x_{2} + x_{3}\right) \\
|
||||||
&=&&\, -4 - x_{1} + x_{2} - x_{3} \\
|
&=&&\, -4 + x_{1} + x_{2} - x_{3} \\
|
||||||
\end{alignat*}
|
\end{alignat*}
|
||||||
|
|
||||||
\underline{Ergebnis des Umwandelns}:
|
\underline{Ergebnis des Umwandelns}:
|
||||||
\begin{alignat*}{5}
|
\begin{alignat*}{5}
|
||||||
x_{0} \,&=&\, 4 \,&+&\, x_{1} \,&-&\, x_{2} \,&+&\, x_{3} \\
|
x_{0} \,&=&\, 4 \,&-&\, x_{1} \,&-&\, x_{2} \,&+&\, x_{3} \\
|
||||||
x_{4} \,&=&\, 6 \,&& &-&\, 3x_{2} \,&+&\, x_{3} \\
|
x_{4} \,&=&\, 6 \,&-&\, 2x_{1} \,&-&\, 3x_{2} \,&+&\, x_{3} \\
|
||||||
x_{5} \,&=&\, 3 \,&+&\, 2x_{1} \,&-&\, 2x_{2} \,&+&\, x_{3} \\ \cline{1 - 9}
|
x_{5} \,&=&\, 3 \,&& &-&\, 2x_{2} \,&+&\, x_{3} \\ \cline{1 - 9}
|
||||||
w &=& -2 \,&-&\, x_{1} \,&+&\, x_{2} \,&-&\, x_{3}
|
w &=& -4 \,&+&\, x_{1} \,&+&\, x_{2} \,&-&\, x_{3}
|
||||||
\end{alignat*}
|
\end{alignat*}
|
||||||
|
|
||||||
\underline{1. Iteration}:
|
\underline{1. Iteration}:
|
||||||
|
|
||||||
Eingangsvariable: $x_{2}$ \\
|
Eingangsvariable: $x_{1}$ \\
|
||||||
Ausgangsvariable: $x_{5}$
|
Ausgangsvariable: $x_{0}$
|
||||||
|
|
||||||
Es folgt
|
Es folgt
|
||||||
\begin{alignat*}{2}
|
\begin{alignat*}{2}
|
||||||
2x_{2} &=&& 3 + 2x_{1} + x_{3} - x_{5} \\
|
x_{1} \,&=&&\, 4 - x_{2} + x_{3} - x_{0} \\
|
||||||
x_{2} &=&& \frac{3}{2} + x_{1} + \frac{1}{2}x_{3} - \frac{1}{2}x_{5} \\
|
x_{4} \,&=&&\, 6 - 2\left(4 - x_{2} + x_{3} - x_{0}\right) - 3x_{2} + x_{3} \\
|
||||||
x_{0} &=&& 4 + x_{1} - \left(\frac{3}{2} + x_{1} + \frac{1}{2}x_{3} - \frac{1}{2}x_{5}\right) + x_{3} \\
|
&=&&\, 6 - 8 + 2x_{2} - 2x_{3} + 2x_{0} - 3x_{2} + x_{3}\\
|
||||||
&=&& 4 + x_{1} - \frac{3}{2} - x_{1} - \frac{1}{2}x_{3} + \frac{1}{2}x_{5} + x_{3}\\
|
&=&&\, -2 - x_{2} - x_{3} + 2x_{0} \\
|
||||||
&=&& \frac{5}{2} + \frac{1}{2}x_{3} + \frac{1}{2}x_{5} \\
|
x_{5} \,&=&&\, 3 - 2x_{2} + x_{3} \\
|
||||||
x_{4} &=&& 6 - 3\left(\frac{3}{2} + x_{1} + \frac{1}{2}x_{3} - \frac{1}{2}x_{5}\right) + x_{3} \\
|
w \,&=&&\, -4 + \left(4 - x_{2} + x_{3} - x_{0}\right) + x_{2} - x_{3} \\
|
||||||
&=&& 6 - \frac{9}{2} - 3x_{1} + \frac{3}{2}x_{3} - \frac{3}{2}x_{5} + x_{3}\\
|
&=&&\, -4 + 4 - x_{2} + x_{3} - x_{0} + x_{2} - x_{3} \\
|
||||||
&=&& \frac{3}{2} - 3x_{1} + \frac{5}{2}x_{3} - \frac{3}{2}x_{5} \\
|
&=&&\, 0 - x_{0}
|
||||||
w &=&& -2 - x_{1} + \left(\frac{3}{2} + x_{1} + \frac{1}{2}x_{3} - \frac{1}{2}x_{5}\right) - x_{3} \\
|
|
||||||
&=&& -2 - x_{1} + \frac{3}{2} + x_{1} + \frac{1}{2}x_{3} - \frac{1}{2}x_{5} - x_{3} \\
|
|
||||||
&=&& \frac{1}{2} - \frac{1}{2}x_{3} - \frac{1}{2}x_{5}
|
|
||||||
\end{alignat*}
|
\end{alignat*}
|
||||||
|
|
||||||
\underline{Ergebnis der 1. Iteration}:
|
\underline{Ergebnis der 1. Iteration}:
|
||||||
\begin{alignat*}{5}
|
\begin{alignat*}{5}
|
||||||
x_{2} \,&=&\, \frac{3}{2} \,&+&\, x_{1} \,&+&\, \frac{1}{2}x_{3} \,&-&\, \frac{1}{2}x_{5} \\
|
x_{1} \,&=&\, 4 \,&-&\, x_{2} \,&+&\, x_{3} \,&-&\, x_{0} \\
|
||||||
x_{0} \,&=&\, \frac{5}{2} \,&& &+&\, \frac{1}{2}x_{3} \,&+&\, \frac{1}{2}x_{5} \\
|
x_{4} \,&=&\, -2 \,&-&\, x_{2} \,&-&\, x_{3} \,&+&\, 2x_{0} \\
|
||||||
x_{4} \,&=&\, \frac{3}{2} \,&-&\, 3x_{1} \,&+&\, \frac{5}{2}x_{3} \,&-&\, \frac{3}{2}x_{5} \\ \cline{1 - 9}
|
x_{5} \,&=&\, 3 \,&-&\, 2x_{2} \,&+&\, x_{3} \,&& \\ \cline{1 - 9}
|
||||||
w &=& \frac{1}{2} \,&& &-&\, \frac{1}{2}x_{3} \,&-&\, \frac{1}{2}x_{5}
|
w &=& && && &-&\, x_{0}
|
||||||
\end{alignat*}
|
\end{alignat*}
|
||||||
|
|
||||||
Da das Hilfsproblem keine optimale Lösung besitzt, besitzt das ursprüngliche Problem keine zulässige Lösung und ist damit unlösbar.
|
Das Tableau ist optimal. Als optimale Lösung des Hilfsproblem erhält man:
|
||||||
|
\[
|
||||||
|
x_{0} = 0, x_{1} = 4, x_{2} = 0
|
||||||
|
\]
|
||||||
|
|
||||||
|
Als zulässige Lösung für das ursprüngliche Problem ergibt sich:
|
||||||
|
\[
|
||||||
|
x_{1} = 4, x_{2} = 0
|
||||||
|
\]
|
||||||
|
|
||||||
|
Die ursprüngliche Zielfunktion lautet $z = x_{1} + 3x_{2}$. Setzt man für $x_{1}$ die rechte Seite der Gleichung im obigen Tableau ein, erhält man:
|
||||||
|
|
||||||
|
\[
|
||||||
|
z = 4 - x_{2} + x_{3} + 3x_{2}
|
||||||
|
\]
|
||||||
|
|
||||||
|
Daraus ergibt sich dieses Starttableau:
|
||||||
|
|
||||||
|
\begin{alignat*}{4}
|
||||||
|
x_{1} \,&=&\, 4 \,&-&\, x_{2} \,&+&\, x_{3} \\
|
||||||
|
x_{4} \,&=&\, -2 \,&-&\, x_{2} \,&-&\, x_{3} \\
|
||||||
|
x_{5} \,&=&\, 3 \,&-&\, 2x_{2} \,&+&\, x_{3} \\ \cline{1 - 7}
|
||||||
|
z \,&=&\, 4 \,&+&\, 2x_{2} \,&+&\, x_{3}
|
||||||
|
\end{alignat*}
|
||||||
|
|
||||||
\subsection{} %b
|
\subsection{} %b
|
||||||
\textbf{Aufgabe:} Lösen Sie das folgende LP-Hilfsproblem mit dem Simplexverfahren:
|
\textbf{Aufgabe:} Lösen Sie das folgende LP-Hilfsproblem mit dem Simplexverfahren:
|
||||||
|
|
Loading…
Reference in New Issue