mirror of https://github.com/2martens/uni.git
AD-7: Aufgaben 1 und 2 bearbeitet.
This commit is contained in:
parent
87f5d72027
commit
8a6f1fe0f8
|
@ -42,10 +42,68 @@ Jim Martens (6420323)}
|
||||||
|
|
||||||
\section{} %1
|
\section{} %1
|
||||||
\subsection{} %a
|
\subsection{} %a
|
||||||
|
\[
|
||||||
|
(F, H), (E, G), (D, F), (C, E), (E, F), (I, J), (C, B), (B, A), (G, I)
|
||||||
|
\]
|
||||||
\subsection{} %b
|
\subsection{} %b
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\node (A) {$A^{1}$};
|
||||||
|
\node (B) [below=of A] {$B^{0}$};
|
||||||
|
\node (C) [above right=of A] {$C^{3}$};
|
||||||
|
\node (D) [below=of C] {$D^{0}$};
|
||||||
|
\node (E) [right=of D] {$E^{1}$};
|
||||||
|
\node (F) [below=of E] {$F^{0}$};
|
||||||
|
\node (G) [right=of E] {$G^{2}$};
|
||||||
|
\node (H) [below=of G] {$H^{0}$};
|
||||||
|
\node (I) [right=of H] {$I^{1}$};
|
||||||
|
\node (J) [below=of I] {$J^{0}$};
|
||||||
|
|
||||||
|
\path[->,line width=1pt]
|
||||||
|
(B) edge (A)
|
||||||
|
(D) edge (C)
|
||||||
|
(F) edge (E)
|
||||||
|
(H) edge (G)
|
||||||
|
(J) edge (I)
|
||||||
|
(E) edge (C)
|
||||||
|
(I) edge (G)
|
||||||
|
(A) edge (C)
|
||||||
|
(G) edge (C);
|
||||||
|
\end{tikzpicture}
|
||||||
\subsection{} %c
|
\subsection{} %c
|
||||||
|
\[
|
||||||
|
(A, B), (B, G), (E, G), (C, E), (E, F), (F, H), (D, F), (A, I), (I, J)
|
||||||
|
\]
|
||||||
\subsection{} %d
|
\subsection{} %d
|
||||||
|
Beim Algorithmus von Prim wird zunächst eine for-Schleife über alle Knoten durchlaufen, welche damit die Laufzeit $\mathcal{O}(|V|)$ hat. Hinzu kommt eine while-Schleife über eine Queue mit initial $|V|$ Einträgen. Damit wird die while-Schleife genau $|V|$ mal durchlaufen, da in jedem Durchgang ein Eintrag entfernt wird. Die Operation deletemin hat eine Laufzeit von $\mathcal{O}(\log V)$, womit die Aufrufe von deletemin insgesamt $\mathcal{O}(V \cdot \log V)$ Zeit erfordern.
|
||||||
|
|
||||||
|
Die for each Schleife wird \underline{insgesamt} $2|E|$ mal ausgeführt, was $\mathcal{O}(E)$ entspricht. Die decreasekey-Operation hat eine Laufzeit von $\mathcal{O}(\log V)$, womit sich insgesamt eine Laufzeit von $\mathcal{O}(V + V \cdot \log V + E \cdot \log V) = \mathcal{O}(E \cdot \log V)$ ergibt.
|
||||||
|
|
||||||
\section{} %2
|
\section{} %2
|
||||||
|
\begin{algorithmic}[1]
|
||||||
|
\Function{CanBeDivided}{s}
|
||||||
|
\State $l \gets \Call{Length}{s}$
|
||||||
|
\If{\Call{Dict}{s} = 1}
|
||||||
|
\State \Return 1
|
||||||
|
\ElsIf{$l$ = 0}
|
||||||
|
\State \Return 0
|
||||||
|
\Else
|
||||||
|
\State $Q \gets \Call{CreateQueue}$
|
||||||
|
\For{$i = 1 ... l-1$}
|
||||||
|
\If{\Call{Dict}{$s_{1}...s_{i}$} = 1}
|
||||||
|
\State $Q.enqueue(i+1)$
|
||||||
|
\EndIf
|
||||||
|
\EndFor
|
||||||
|
\State $result \gets 0$
|
||||||
|
\While{Q not empty}
|
||||||
|
\State $pos \gets Q.dequeue()$
|
||||||
|
\If{$!result$}
|
||||||
|
\State $result \gets \Call{CanBeDivided}{s_{pos}...s_{l}}$
|
||||||
|
\EndIf
|
||||||
|
\EndWhile
|
||||||
|
\State \Return $result$
|
||||||
|
\EndIf
|
||||||
|
\EndFunction
|
||||||
|
\end{algorithmic}
|
||||||
\setcounter{section}{6}
|
\setcounter{section}{6}
|
||||||
\section{} %7
|
\section{} %7
|
||||||
\setcounter{subsection}{4}
|
\setcounter{subsection}{4}
|
||||||
|
|
Loading…
Reference in New Issue