AD-1: Typo korrigiert.

This commit is contained in:
Jim Martens 2013-10-22 19:27:42 +02:00
parent 2f2f5bbe63
commit 7b82660410
1 changed files with 1 additions and 1 deletions

View File

@ -218,5 +218,5 @@
Damit ist die Behauptung, dass $\mathcal{O}(\log n)$ Multiplikationen ausreichen um $X^{n}$ zu berechnen, gezeigt.
\subsection{} %c
In 3b haben wir gezeigt, dass sich $X^{n}$ in $\mathcal{O}(\log n)$ Multiplikationen ausgerechnet werden kann. Daraus lässt sich schließen, dass sich auch die $2x2$ Matrix in $\star$ in logarithmischer Zeit errechnen lässt. Eine weitere Multiplikation macht dann auch keinen Unterschied mehr. Daher lässt sich $\star$ in logarithmischer Zeit lösen. Da jeder Logarithmus langsamer wächst und damit schneller ist als eine Potenzfunktion, ist das Matrizen-Verfahren damit echt schneller als das in der Vorlesung vorgestellte Verfahren.
In 3b haben wir gezeigt, dass sich $X^{n}$ in $\mathcal{O}(\log n)$ Multiplikationen ausgerechnet werden kann. Daraus lässt sich schließen, dass sich auch die 2x2 Matrix in $\star$ in logarithmischer Zeit errechnen lässt. Eine weitere Multiplikation macht dann auch keinen Unterschied mehr. Daher lässt sich $\star$ in logarithmischer Zeit lösen. Da jeder Logarithmus langsamer wächst und damit schneller ist als eine Potenzfunktion, ist das Matrizen-Verfahren damit echt schneller als das in der Vorlesung vorgestellte Verfahren.
\end{document}