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Abstract

Object detection in open set conditions is an important part of applying object
detection to real world data sets. The key question is how to identify unknown or
novel data. Dropout sampling with entropy thresholding is one possible avenue to
answer the question.

This thesis compares vanilla SSD and SSD with dropout sampling on the MS
COCO data set. The hyper parameters confidence threshold, entropy threshold,
usage of non-maximum suppression, usage of dropout layers during testing, and
the dropout keep ratio are varied to create different scenarios. Both results from
macro and micro averaging are presented.

Results show a significant improvement of the object detection performance with
a higher confidence threshold. The usage of non-maximum suppression improves
performance as well. Usage of dropout layers during testing does not provide a
better result, a lower keep ratio decreases the performance.
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1 Introduction

The introduction first explains the wider context, before providing technical de-
tails.

Motivation

Famous examples like the automatic soap dispenser, which does not recognise the
hand of a black person but dispenses soap when presented with a paper towel,
raise the question of bias in computer systems [1]. Related to this ethical ques-
tion regarding the design of so called algorithms is the question of algorithmic
accountability [2].

Supervised neural networks learn from input-output relations and figure out by
themselves what connections are necessary for that. This feature is also their
Achilles heel: in effect, it makes them black boxes and prevents any answers to
questions of causality.

However, these questions of causality are of enormous consequence when results
of neural networks are used to make life changing decisions: is a correlation enough
to bring forth negative consequences for a particular person? And if so, what is the
possible defence against math? Similar questions can be raised when looking at
computer vision networks that might be used together with so called smart CCTV
cameras to discover suspicious activity.

This leads to the need for neural networks to explain their results. Such an
explanation must come from the network or an attached piece of technology to
allow mass adoption. Obviously, this setting poses the question of how such an
endeavour can be achieved.

For neural networks there are fundamentally two types of problems: regression
and classification. Regression deals with any case where the goal for the network
is to come close to an ideal function that connects all data points. Classification,
however, describes problems where the network is supposed to identify the class
of any given input. In this thesis, I will work with both.

Object Detection in Open Set Conditions

More specifically, I will look at object detection in the open set conditions (see
figure 1.1). In non-technical terms, this describes the conditions CCTV, and robots
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1 Introduction

Training and 
Validation Set

Test Set
(Deployment)

Figure 1.1: Open set problem: the test set contains classes that were not present
during training time. Icons in this image have been taken from the
COCO data set website (https://cocodataset.org/#explore) and
were vectorised afterwards. Resembles figure 1 of Miller et al. [3].

outside of a laboratory operate in. In both cases images are recorded with cameras.
In order to detect objects, a neural network has to analyse the images and return
a list of detected and classified objects that it finds in the images. The problem
here is that networks can only classify what they know. If presented with an
object type that the network was not trained with, as happens frequently in real
environments, it will still classify the object and might even have a high confidence
in doing so. This is an example for a false positive. Anyone who uses the results of
such a network could falsely assume that a high confidence means the classification
is very likely correct. If one uses a proprietary system one might not even be able
to find out that the network was never trained on a particular type of object.
Therefore, it would be impossible for one to identify the output of the network as
a false positive.

This reaffirms the need for automatic explanation. Such a system should recog-
nise by itself that the given object is unknown and mark any classification result of
the network as meaningless. Technically there are two slightly different approaches
that deal with this type of task: model uncertainty and novelty detection.

Model uncertainty can be measured, for example, with dropout sampling. Dro-
pout layers are usually used only during training, but Miller et al. [3] also use
them during testing to achieve different results for the same image—making use
of multiple forward passes. The output scores for the forward passes of the same
image are then averaged. If the averaged class probabilities resemble a uniform
distribution (every class has the same probability) this symbolises maximum un-
certainty. Conversely, if there is one very high probability with every other being

2
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1 Introduction

very low, this signifies a low uncertainty. An unknown object is more likely to
cause high uncertainty, which allows for an identification of false positive cases.

Novelty detection is another approach to solve the problem. In the realm of
neural networks it is usually done with the help of auto-encoders that try to solve
a regression problem of finding an identity function that reconstructs the given
input [4]. Auto-encoders have, internally, at least two components: an encoder,
and a decoder or generator. The job of the encoder is to find an encoding that
compresses the input as well as possible, while simultaneously being as loss-free
as possible. The decoder takes this latent representation of the input, and has to
find a decompression that reconstructs the input as accurately as possible. During
training these auto-encoders learn to reproduce a certain group of object classes.
The actual novelty detection takes place during testing: given an image, and the
output and loss of the auto-encoder, a novelty score is calculated. For some novelty
detection approaches the reconstruction loss is the novelty score, others consider
more factors. A low novelty score signals a known object. The opposite is true for
a high novelty score.

Research Question

Auto-encoders work well for data sets like MNIST [5] but perform poorly on chal-
lenging real world data sets like MS COCO [6], complicating any potential com-
parison between them and object detection networks like Single Shot MultiBox
Detector (SSD). Therefore, a comparison between model uncertainty with a net-
work like SSD and novelty detection with auto-encoders is considered out of scope
for this thesis.

Miller et al. [3] use an SSD pre-trained on COCO without further fine-tuning
on the SceneNet RGB-D data set [7] and report good results regarding open set
error (OSE) for an SSD variant with dropout sampling and entropy thresholding.
If their results are generalisable it should be possible to replicate the relative
difference between the variants on the COCO data set. This leads to the following
hypothesis: Dropout sampling delivers better object detection performance under
open set conditions compared to object detection without it.
For the purpose of this thesis, I use the vanilla SSD (as in: the original SSD) as

baseline to compare against. In particular, vanilla SSD uses a per class confidence
threshold of 0.01, an IOU threshold of 0.45 for the non-maximum suppression
(NMS), and a top k value of 200. For this thesis, the top k value has been changed
to 20 and the confidence threshold of 0.2 has been tried as well. The effect of
an entropy threshold is measured against this vanilla SSD by applying entropy
thresholds from 0.1 to 2.4 inclusive (limits taken from Miller et al.). Dropout
sampling is compared to vanilla SSD with and without entropy thresholding.
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1 Introduction

Hypothesis Dropout sampling delivers better object detection performance un-
der open set conditions compared to object detection without it.

Reader’s Guide

First, chapter 2 presents related works, and provides the background for dropout
sampling. Thereafter, chapter 3 explains how vanilla SSD works, how Bayesian
SSD extends vanilla SSD, and how the decoding pipelines are structured. Chapter
4 presents the data sets, the experimental setup, and the results. This is followed
by chapter 5, focusing on the discussion and closing.
The contribution of this thesis is found in chapters 3, 4, and 5.
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2 Background

This chapter begins with an overview of previous works, followed by an explanation
of the theoretical foundations of dropout sampling.

2.1 Related Works

The task of novelty detection can be accomplished in a variety of ways. Pimentel
et al. [4] provide a review of novelty detection methods published over the pre-
vious decade. They showcase probabilistic, distance-based, reconstruction-based,
domain-based, and information-theoretic novelty detection. Based on their cat-
egorisation, this thesis falls under reconstruction-based novelty detection as it deals
only with neural network approaches. The other types of novelty detection will,
therefore, only be introduced briefly.

2.1.1 Overview over types of Novelty Detection

Probabilistic approaches estimate the generative probabilistic density function
(pdf) of the data. It is assumed that the training data is generated from an
underlying probability distribution D. This distribution can be estimated with
the training data, the estimate is defined as D̂ and represents a model of nor-
mality. A novelty threshold is applied to D̂ in a way that allows a probabilistic
interpretation. Pidhorskyi et al. [8] combine a probabilistic approach to novelty
detection with auto-encoders.

Distance-based novelty detection uses either nearest neighbour-based approaches
(e.g. k-nearest neighbour [9]) or clustering-based approaches (e.g. k-means clus-
tering algorithm [10]). Both methods are similar to estimating the pdf of data,
they use well-defined distance metrics to compute the distance between two data
points.

Domain-based novelty detection describes the boundary of the known data,
rather than the data itself. Unknown data is identified by its position relative
to the boundary. Support vector machines (e.g. implemented by Song et al. [11])
are a common implementation of this.

Information-theoretic novelty detection computes the information content of a
data set, for example, with metrics like entropy. Such metrics assume that novel
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2 Background

data inside the data set significantly alters the information content of an otherwise
normal data set. First, the metrics are calculated over the whole data set. Second,
a subset is identified that causes the biggest difference in the metric when removed
from the data set. This subset is considered to consist of novel data. For example,
Filippone and Sanguinetti [12] provide a recent approach.

2.1.2 Reconstruction-based Novelty Detection

Reconstruction-based approaches use the reconstruction error in one form or an-
other to calculate the novelty score. These can be auto-encoders that literally
reconstruct the input but it also includes multilayer perceptron (MLP) networks
which try to reconstruct the ground truth. Pimentel et al. [4] differentiate between
neural network-based approaches and subspace methods. The first are further dif-
ferentiated between MLPs, Hopfield networks, autoassociative networks, radial
basis function, and self-organising networks. The remainder of this section focuses
on MLP-based works, a particular focus will be on the task of object detection
and Bayesian networks.
Novelty detection for object detection is intricately linked with open set con-

ditions: the test data can contain unknown classes. Bishop [13] investigates the
correlation between the degree of novel input data and the reliability of network
outputs, and introduces a quantitative way to measure novelty.
The Bayesian approach provides a theoretical foundation for modelling uncer-

tainty [14]. MacKay [15] provides a practical Bayesian framework for backpropaga-
tion networks. Neal [16] builds upon the work of MacKay and explores Bayesian
learning for neural networks. However, these Bayesian neural networks do not
scale well. Over the course of time, two major Bayesian approximations have been
introduced: one based on dropout and one based on batch normalisation.
Gal and Ghahramani [17] show that dropout training is a Bayesian approxim-

ation of a Gaussian process. Subsequently, Gal [18] shows that dropout training
actually corresponds to a general approximate Bayesian model. This means every
network trained with dropout is an approximate Bayesian model. During inference
the dropout remains active: this form of inference is called Monte Carlo Dropout
(MCDO). Miller et al. [3] build upon the work of Gal and Ghahramani: they use
MCDO under open-set conditions for object detection. In a second paper [19],
Miller et al. continue their work and compare merging strategies for sampling-
based uncertainty techniques in object detection.
Teye et al. [20] make the point that most modern networks have adopted other

regularisation techniques. Ioffe and Szeged [21] introduce batch normalisation
which has been adapted widely in the meantime. Teye et al. show how batch
normalisation training is similar to dropout and can be viewed as an approxim-
ate Bayesian inference. Estimates of the model uncertainty can be gained with a
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2 Background

technique named Monte Carlo Batch Normalisation (MCBN). Consequently, this
technique can be applied to any network that utilises standard batch normalisa-
tion. Li et al. [22] investigate the problem of poor performance when combining
dropout and batch normalisation: dropout shifts the variance of a neural unit
when switching from train to test; batch normalisation does not change the vari-
ance. This inconsistency leads to a variance shift which can have a larger or smaller
impact based on the network used.
Non-Bayesian approaches have also been developed. Usually they are com-

pared with MCDO and show better performance. Postels et al. [23] provide a
sampling-free approach for uncertainty estimation that does not affect training,
and approximates the sampling at test time. They compare it to MCDO and find
less computational overhead with better results. Lakshminarayanan et al. [24] im-
plement a predictive uncertainty estimation using deep ensembles. Compared to
MCDO, it shows better results. Geifman et al. [25] introduce an uncertainty es-
timation algorithm for non-Bayesian deep neural classification that estimates the
uncertainty of highly confident points using earlier snapshots of the trained model
and improves, among others, the approach introduced by Lakshminarayanan et al.
Sensoy et al. [26] explicitly model prediction uncertainty: a Dirichlet distribution
is placed over the class probabilities. Consequently, the predictions of a neural
network are treated as subjective opinions.
In addition to the aforementioned Bayesian and non-Bayesian works, there are

some Bayesian works that do not quite fit with the rest but are important as
well. Mukhoti and Gal [27] contribute metrics to measure uncertainty for semantic
segmentation. Wu et al. [28] introduce two innovations that turn variational Bayes
into a robust tool for Bayesian networks: first, a novel deterministic method to
approximate moments in neural networks which eliminates gradient variance, and
second, a hierarchical prior for parameters and an empirical Bayes procedure to
select prior variances.

2.2 Background for Dropout Sampling

This section will use the notation defined in table 2.1 on page 8. The subsec-
tions ‘Dropout Variational Inference’ and ‘Dropout Sampling for Object Detec-
tion’ follow the theoretical explanation by Miller et al. [3]. To understand dropout
sampling, it is necessary to explain the idea of Bayesian neural networks. They
place a prior distribution over the network weights, for example a Gaussian prior
distribution: W ∼ N (0, I). In this example W are the weights and I symbol-
ises that every weight is drawn from an independent and identical distribution.
The training of the network determines a plausible set of weights by evaluating
the probability output (posterior) over the weights given the training data T:
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2 Background

Table 2.1: Notation for background
symbol meaning
W weights
T training data
N (0, I) Gaussian distribution
I independent and identical distribution
p(W|T) probability of weights given training data
I an image
q = p(y|I,T) probability of all classes given image and training data
H(q) entropy over probability vector
W̃ weights sampled from p(W|T)
b bounding box coordinates
s softmax scores
s averaged softmax scores
D detections of one forward pass
D set of all detections over multiple forward passes
O observation
q probability vector for observation

p(W|T). However, this evaluation cannot be performed in any reasonable amount
of time. Therefore approximation techniques are required. In those techniques the
posterior is fitted with a simple distribution q∗θ(W). The original and intractable
problem of averaging over all weights in the network is replaced with an optimisa-
tion task: the parameters of the simple distribution are optimised [29].

Dropout Variational Inference

Kendall and Gal [29] show an approximation for classfication and recognition tasks.
Dropout variational inference is a practical approximation technique by adding
dropout layers in front of every weight layer and also using them during test time to
sample from the approximate posterior. In effect, this results in the approximation
of the class probability p(y|I,T) by performing n forward passes through the
network and averaging the so obtained softmax scores si, given an image I and
the training data T:

p(y|I,T) =

∫
p(y|I,W) · p(W|T)dW ≈ 1

n

n∑
i=1

si (2.1)

With this dropout sampling technique, n model weights W̃i are sampled from
the posterior p(W|T). The class probability p(y|I,T) is a probability vector q

8



2 Background

over all class labels. Finally, the uncertainty of the network with respect to the
classification is given by the entropy H(q) = −

∑
i qi · log qi.

Dropout Sampling for Object Detection

Miller et al. [3] apply the dropout sampling to object detection. In that case
W represents the learned weights of a detection network, for example SSD [30].
Every forward pass uses a different network W̃ which is approximately sampled
from p(W|T). Each forward pass in object detection results in a set of detections,
each consisting of bounding box coordinates b and softmax score s. The detections
are denoted by Miller et al. as Di = {si,bi}. The detections of all passes are put
into a large set D = {D1, ..., D2}.
All detections with mutual intersection-over-union scores (IoU) of 0.95 or higher

are defined as an observation Oi. Subsequently, the corresponding vector of class
probabilities qi for the observation is calculated by averaging all score vectors sj
in a particular observation Oi: qi ≈ si =

1
n

∑n
j=1 sj. The label uncertainty of the

detector for a particular observation is measured by the entropy H(qi).
If qi resembles a uniform distribution the entropy will be high. A uniform distri-

bution means that no class is more likely than another, which is a perfect example
of maximum uncertainty. Conversely, if one class has a very high probability the
entropy will be low.

In open set conditions it can be expected that falsely generated detections for
unknown object classes have a higher label uncertainty. A threshold on the entropy
H(qi) can then be used to identify and reject these false positive cases.
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3 Methods

This chapter explains the functionality of vanilla SSD, Bayesian SSD, and the
decoding pipelines.

3.1 Vanilla SSD

Vanilla SSD is based upon the VGG-16 network (see figure 3.1) and adds extra
feature layers. The entire image (always size 300x300) is divided up into so called
anchor boxes. During training, each of these boxes is mapped to a ground truth box
or background. For every anchor box both the offset to the object and the class
confidences are calculated. The output of the SSD network are the predictions
with class confidences, offsets to the anchor box, anchor box coordinates, and
variance. The model loss is a weighted sum of localisation and confidence loss. As
the network has a fixed number of anchor boxes, every forward pass creates the
same number of detections—8732 in the case of SSD 300x300.

Notably, the object proposals are made in a single run for an image—single
shot. Other techniques like Faster R-CNN employ region proposals and pooling.
For more detailed information on SSD, please refer to Liu et al. [30].
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Figure 3.1: The vanilla SSD network as defined by Liu et al. [30]. VGG-16 is the
base network, extended with extra feature layers. These predict offsets
to anchor boxes with different sizes and aspect ratios. Furthermore,
they predict the corresponding confidences.
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Figure 3.2: The Bayesian SSD network as defined by Miller et al. [3]. It adds
dropout layers after the fc6 and fc7 layers.

3.2 Bayesian SSD for Model Uncertainty

Networks trained with dropout are a general approximate Bayesian model [18] and
can be used for everything a true Bayesian model could be used for. Miller et al.
apply this idea to SSD: two dropout layers are added to vanilla SSD, after the
layers fc6 and fc7 respectively (see figure 3.2).

Motivation for this is model uncertainty: for the same object on the same image,
an uncertain model will predict different classes across multiple forward passes.
This uncertainty is measured with entropy: every forward pass results in predic-
tions, these are partitioned into observations, and subsequently their entropy is
calculated. A higher entropy indicates a more uniform distribution of confidences
whereas a lower entropy indicates a larger confidence in one class and very low
confidences in other classes.

3.2.1 Implementation Details

For this thesis, an SSD implementation based on Tensorflow [31] and Keras [32]
is used. It has been modified to support entropy thresholding, partitioning of
observations, and dropout layers in the SSD model. Entropy thresholding takes
place before the per class confidence threshold is applied.

The Bayesian variant was not fine-tuned and operates with the same weights
that vanilla SSD uses as well.

3.3 Decoding Pipelines

The raw output of SSD is not very useful: it contains thousands of boxes per
image. Among them are many boxes with very low confidences or background
classifications, those need to be filtered out to get any meaningful output of the
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network. The process of filtering is called decoding and presented for the three
structural variants of SSD used in the thesis.

3.3.1 Vanilla SSD

Liu et al. [30] use Caffe for their original SSD implementation. The decoding pro-
cess contains largely two phases: decoding and filtering. Decoding transforms the
relative coordinates predicted by SSD into absolute coordinates. Before decoding,
the shape of the output per batch is (batch_size,#nr_boxes,#nr_classes+12).
The last twelve elements are split into the four bounding box offsets, the four an-
chor box coordinates, and the four variances; there are 8732 boxes. After decoding,
of the twelve elements only four remain: the absolute coordinates of the bounding
box.
Filtering of these boxes is first done per class: all classes except background

are iterated through and for every detection the class id of the current class, the
confidence for that class, and the bounding box coordinates are kept. The filtering
consists of confidence thresholding and a subsequent non-maximum suppression
(NMS). All boxes that pass NMS are added to a per image maxima list. One box
could make the confidence threshold for multiple classes and, hence, be present
multiple times in the maxima list for the image. In the end, a total of k boxes
with the highest confidences is kept per image across all classes. The original
implementation uses a confidence threshold of 0.01, an IOU threshold for NMS of
0.45 and a top k value of 200.
The vanilla SSD per class confidence threshold and NMS has one weakness: even

if SSD correctly predicts all objects as the background class with high confidence,
the per class confidence threshold of 0.01 will consider predictions with very low
confidences; as background boxes are not present in the maxima collection, many
low confidence boxes can be. Furthermore, the same detection can be present in
the maxima collection for multiple classes. In this case, the entropy threshold
would let the detection pass because the background class has high confidence.
Subsequently, a low per class confidence threshold does not restrict the boxes
either. Therefore, the decoding output is worse than the actual predictions of the
network. Bayesian SSD cannot help in this situation because the network is not
actually uncertain.
SSD was developed with closed set conditions in mind. A well trained network in

such a situation does not have many high confidence background detections. In an
open set environment, however, background detections are the correct behaviour
for unknown classes. In order to get useful detections out of the decoding, a higher
confidence threshold is required.
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3.3.2 Vanilla SSD with Entropy Thresholding

Vanilla SSD with entropy thresholding adds an additional component to the filter-
ing already done for vanilla SSD. The entropy is calculated from all #nr_classes
softmax scores in a prediction. Only predictions with a low enough entropy pass
the entropy threshold and move on to the aforementioned per class filtering. This
excludes very uniform predictions but cannot identify false positive or false negat-
ive cases with high confidence values.

3.3.3 Bayesian SSD with Entropy Thresholding

Bayesian SSD uses multiple forward passes. Based on the information from Miller
et al. [3], the detections of all forward passes are grouped per image but not by for-
ward pass. This leads to the following shape of the network output after all forward
passes: (batch_size,#nr_boxes · #nr_forward_passes,#nr_classes + 12).
The size of the output increases linearly with more forward passes.
These detections have to be decoded first. Afterwards, all detections are thrown

away which do not pass a confidence threshold for the class with the highest pre-
diction probability. Additionally, all detections with a background prediction of
0.8 or higher are discarded. The remaining detections are partitioned into ob-
servations to further reduce the size of the output, and to identify uncertainty.
This is accomplished by calculating the mutual IOU score of every detection with
all other detections. Detections with a mutual IOU score of 0.95 or higher are
partitioned into an observation. Next, the softmax scores and bounding box co-
ordinates of all detections in an observation are averaged. There can be a dif-
ferent number of observations for every image, which destroys homogenity and
prevents batch-wise calculation of the results. The shape of the results is per
image: (#nr_observations,#nr_classes+ 4).
Entropy is measured in the next step. All observations with too high entropy

are discarded. Entropy thresholding in combination with dropout sampling should
improve identification of false positives of unknown classes. This is due to multiple
forward passes and the assumption that uncertainty in some objects will result in
different classifications in multiple forward passes. These varying classifications are
averaged into multiple lower confidence values which should increase the entropy
and, hence, flag an observation for removal.
The remainder of the filtering follows the vanilla SSD procedure: per class con-

fidence threshold, NMS, and a top k selection at the end.
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4 Experimental Setup and
Results

This chapter explains the data sets used, and how the experiments have been set
up. Furthermore, it presents the results.

4.1 Data Sets

This thesis uses the MS COCO [6] data set. It contains 80 classes, their range is
illustrated by two classes: airplanes and toothbrushes. The images are real world
images, ground truth is provided for all images. The data set supports object
detection, keypoint detection, and panoptic segmentation (scene segmentation).
The data of any data set has to be prepared for use in a neural network. Typical

problems of data sets include, for example, outliers and invalid bounding boxes.
Before a data set can be used, these problems need to be resolved.
For the MS COCO data set, all annotations are checked for impossible values:

bounding box height or width lower than zero, xmin and ymin bounding box co-
ordinates lower than zero, xmax and ymax coordinates lower than or equal to zero,
xmin greater than xmax, ymin greater than ymax, image width lower than xmax, and
image height lower than ymax. In the last two cases the bounding box width and
height are set to (image width - xmin) and (image height - ymin) respectively; in
the other cases the annotation is skipped. If the bounding box width or height
afterwards is lower than or equal to zero the annotation is skipped.
SSD accepts 300x300 input images, the MS COCO data set images are resized

to this resolution; the aspect ratio is not kept in the process. MS COCO contains
landscape and portrait images with (640x480) and (480x640) as the resolution.
This leads to a uniform distortion of the portrait and landscape images respectively.
Furthermore, the colour channels are swapped from RGB to BGR in order to
comply with the SSD implementation. The BGR requirement stems from the
usage of Open CV in SSD: the internal channel order for Open CV is BGR.
For this thesis, weights pre-trained on the sub data set trainval35k of the COCO

data set are used. These weights have been created with closed set conditions in
mind, therefore, they have been sub-sampled to create an open set condition. To
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4 Experimental Setup and Results

this end, the weights for the last 20 classes have been thrown away, making these
classes, in effect, unknown.
All images of the minival2014 data set are used but only ground truth belonging

to the first 60 classes is loaded. The remaining 20 classes are considered ‘unknown’
and no ground truth bounding boxes for them are provided during the inference
phase. A total of 31,991 detections remain after this exclusion. Of these detections,
a staggering 10,988 or 34,3% belong to the persons class, followed by cars with
1,932 or 6%, chairs with 1,791 or 5,6%, and bottles with 1,021 or 3,2%. Together,
these four classes make up around 49,1% of the ground truth detections. This
shows a huge imbalance between the classes in the data set.

4.2 Experimental Setup

This section explains the setup for the different conducted experiments. Each
comparison investigates one particular question.
As a baseline, vanilla SSD with the confidence threshold of 0.01 and a NMS

IOU threshold of 0.45 is used. Due to the low number of objects per image in the
COCO data set, the top k value has been set to 20. Vanilla SSD with entropy
thresholding uses the same parameters; compared to vanilla SSD without entropy
thresholding, it showcases the relevance of entropy thresholding for vanilla SSD.
Vanilla SSD with 0.2 confidence threshold is compared to vanilla SSD with

0.01 confidence threshold; this comparison investigates the effect of the per class
confidence threshold on the object detection performance.
Bayesian SSD with 0.2 confidence threshold is compared to vanilla SSD with 0.2

confidence threshold. Coupled with the entropy threshold, this comparison reveals
how uncertain the network is. If it is very certain the dropout sampling should
have no significant impact on the result. Furthermore, in two cases the dropout
has been turned off to isolate the impact of NMS on the result.
Both vanilla SSD with entropy thresholding and Bayesian SSD with entropy

thresholding are tested for entropy thresholds ranging from 0.1 to 2.4 inclusive as
specified in Miller et al. [3].

4.3 Results

Results in this section are presented both for micro and macro averaging. In macro
averaging, for example, the precision values of each class are added up and then
divided by the number of classes. Conversely, for micro averaging the precision
is calculated across all classes directly. Both methods have a specific impact:
macro averaging weighs every class the same while micro averaging weighs every
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4 Experimental Setup and Results

detection the same. They will be largely identical when every class is balanced and
has about the same number of detections. However, in case of a class imbalance
the macro averaging favours classes with few detections whereas micro averaging
benefits classes with many detections.
This section only presents the results. Interpretation and discussion is found in

the next chapter.

4.3.1 Micro Averaging

Forward max abs OSE Recall Precision
Passes F1 Score at max F1 point

vanilla SSD - 0.01 conf 0.255 3176 0.214 0.318
vanilla SSD - 0.2 conf 0.376 2939 0.382 0.372

SSD with entropy test - 0.01 conf 0.255 3168 0.214 0.318
Bay. SSD - no DO - 0.2 conf - no NMS 10 0.209 2709 0.300 0.161

no dropout - 0.2 conf - NMS 10 0.371 2335 0.365 0.378
0.9 keep ratio - 0.2 conf - NMS 10 0.359 2584 0.363 0.357
0.5 keep ratio - 0.2 conf - NMS 10 0.325 2759 0.342 0.311

Table 4.1: Rounded results for micro averaging. SSD with entropy test and
Bayesian SSD are represented with their best performing entropy
threshold with respect to F1 score. Vanilla SSD with entropy test per-
formed best with an entropy threshold of 2.4, Bayesian SSD without
NMS performed best for 1.0, and Bayesian SSD with NMS performed
best for 1.4 as entropy threshold. Bayesian SSD with dropout enabled
and 0.9 keep ratio performed best for 1.4 as entropy threshold, the vari-
ant with 0.5 keep ratio performed best for 1.3 as threshold.

Vanilla SSD with a per class confidence threshold of 0.2 performs best (see table
4.1) with respect to the maximum F1 score (0.376) and recall at the maximum F1

point (0.382). In comparison, neither the vanilla SSD variant with a confidence
threshold of 0.01 nor the SSD with an entropy test can outperform the 0.2 variant.
Among the vanilla SSD variants, the 0.2 variant also has the lowest open set error
(2939) and the highest precision (0.372).
The comparison of the vanilla SSD variants with a confidence threshold of 0.01

shows no significant impact of an entropy test. Only the open set error is lower
but in an insignificant way. The rest of the performance metrics are identical after
rounding.
Bayesian SSD with disabled dropout and without NMS has the worst perform-

ance of all tested variants (vanilla and Bayesian) with respect to F1 score (0.209)
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4 Experimental Setup and Results

Figure 4.1: Micro averaged F1 score
versus open set error for
each variant. Perfect per-
formance is an F1 score of
1 and an absolute OSE of 0.

Figure 4.2: Micro averaged precision-
recall curves for each vari-
ant tested.

and precision (0.161). The precision is not only the worst but also significantly
lower compared to all other variants. In comparison to all variants with 0.2 con-
fidence threshold, it has the worst recall (0.300) as well.
With an open set error of 2335, the Bayesian SSD variant with disabled dropout

and enabled NMS offers the best performance with respect to the open set error. It
also has the best precision (0.378) of all tested variants. Furthermore, it provides
the best performance among all variants with multiple forward passes.
Dropout decreases the performance of the network, this can be seen in the

lower F1 scores, a higher open set error, and lower precision values. Both dropout
variants have worse recall (0.363 and 0.342) than the variant with disabled dropout.
However, all variants with multiple forward passes have a lower open set error than
all vanilla SSD variants.
The relation of F1 score to absolute open set error can be observed in figure 4.1.

Precision-recall curves for all variants can be seen in figure 4.2. Both vanilla SSD
variants with 0.01 confidence threshold reach a much higher open set error and
a higher recall. This behaviour is to be expected as more and worse predictions
are included. All plotted variants show a similar behaviour that is in line with
previously reported figures, such as the ones in Miller et al. [3]

4.3.2 Macro Averaging

Vanilla SSD with a per class confidence threshold of 0.2 performs best (see table
4.2) with respect to the maximum F1 score (0.375) and recall at the maximum F1
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4 Experimental Setup and Results

Forward max abs OSE Recall Precision
Passes F1 Score at max F1 point

vanilla SSD - 0.01 conf 0.370 1426 0.328 0.424
vanilla SSD - 0.2 conf 0.375 1218 0.338 0.424

SSD with entropy test - 0.01 conf 0.370 1373 0.329 0.425
Bay. SSD - no DO - 0.2 conf - no NMS 10 0.226 809 0.229 0.224

no dropout - 0.2 conf - NMS 10 0.363 1057 0.321 0.420
0.9 keep ratio - 0.2 conf - NMS 10 0.355 1137 0.320 0.399
0.5 keep ratio - 0.2 conf - NMS 10 0.322 1264 0.307 0.340

Table 4.2: Rounded results for macro averaging. SSD with entropy test and
Bayesian SSD are represented with their best performing entropy
threshold with respect to F1 score. Vanilla SSD with entropy test per-
formed best with an entropy threshold of 1.7, Bayesian SSD without
NMS performed best for 1.5, and Bayesian SSD with NMS performed
best for 1.5 as entropy threshold. Bayesian SSD with dropout enabled
and 0.9 keep ratio performed best for 1.7 as entropy threshold, the vari-
ant with 0.5 keep ratio performed best for 2.0 as threshold.

point (0.338). In comparison, the SSD with an entropy test slightly outperforms
the 0.2 variant with respect to precision (0.425). Additionally, this is the best
precision overall. Among the vanilla SSD variants, the 0.2 variant also has the
lowest open set error (1218).
The comparison of the vanilla SSD variants with a confidence threshold of 0.01

shows no significant impact of an entropy test. Only the open set error is lower but
in an insignificant way. The rest of the performance metrics are almost identical
after rounding.
The results for Bayesian SSD show a significant impact of NMS or the lack

thereof: maximum F1 score of 0.363 (with NMS) to 0.226 (without NMS). Dropout
was disabled in both cases, making them, in effect, vanilla SSD with multiple
forward passes.
With an open set error of 809, the Bayesian SSD variant with disabled dropout

and without NMS offers the best performance with respect to the open set error.
The variant without dropout and enabled NMS has the best F1 score (0.363), the
best precision (0.420) and the best recall (0.321) of all Bayesian variants.
Dropout decreases the performance of the network, this can be seen in the lower

F1 scores, a higher open set error, and lower precision and recall values. However,
all variants with multiple forward passes have a lower open set error than all vanilla
SSD variants.
The relation of F1 score to absolute open set error can be observed in figure 4.3.
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Figure 4.3: Macro averaged F1 score
versus open set error for
each variant. Perfect per-
formance is an F1 score of
1 and an absolute OSE of 0.

Figure 4.4: Macro averaged precision-
recall curves for each vari-
ant tested.

Precision-recall curves for all variants can be seen in figure 4.4. Both vanilla SSD
variants with 0.01 confidence threshold reach a much higher open set error and
a higher recall. This behaviour is to be expected as more and worse predictions
are included. All plotted variants show a similar behaviour that is in line with
previously reported figures, such as the ones in Miller et al. [3]

4.3.3 Class-specific results

As mentioned before, the data set is imbalanced with respect to its classes: four
classes make up roughly 50% of all ground truth detections. Therefore, it is inter-
esting to see the performance of the tested variants with respect to these classes:
persons, cars, chairs, and bottles. Additionally, the results of the giraffe class are
presented as these are exceptionally good, although the class makes up only 0.7%
of the ground truth. With this share, it is below the average of roughly 0.9% for
each of the 56 classes that make up the second half of the ground truth.
In some cases, multiple variants have apparently the same performance but

only one or some of them are marked bold. This is caused by differences prior
to rounding: if two or more variants are marked bold they had the exact same
performance before rounding.
The vanilla SSD variant with 0.2 per class confidence threshold performs best in

the persons class: it has a max F1 score of 0.460, consisting of a recall of 0.405 and
a precision of 0.533. The variant shares the first place in recall with the vanilla
SSD variant that uses a 0.01 confidence threshold. All Bayesian SSD variants
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Forward max Recall Precision
Passes F1 Score at max F1 point

vanilla SSD - 0.01 conf 0.460 0.405 0.532
vanilla SSD - 0.2 conf 0.460 0.405 0.533

SSD with entropy test - 0.01 conf 0.460 0.405 0.532
Bay. SSD - no DO - 0.2 conf - no NMS 10 0.272 0.292 0.256

no dropout - 0.2 conf - NMS 10 0.451 0.403 0.514
0.9 keep ratio - 0.2 conf - NMS 10 0.447 0.401 0.505
0.5 keep ratio - 0.2 conf - NMS 10 0.410 0.368 0.465

Table 4.3: Rounded results for persons class. SSD with entropy test and Bayesian
SSD are represented with their best performing macro averaging entropy
threshold with respect to F1 score.

Forward max Recall Precision
Passes F1 Score at max F1 point

vanilla SSD - 0.01 conf 0.364 0.305 0.452
vanilla SSD - 0.2 conf 0.363 0.294 0.476

SSD with entropy test - 0.01 conf 0.364 0.305 0.453
Bay. SSD - no DO - 0.2 conf - no NMS 10 0.236 0.244 0.229

no dropout - 0.2 conf - NMS 10 0.336 0.266 0.460
0.9 keep ratio - 0.2 conf - NMS 10 0.332 0.262 0.454
0.5 keep ratio - 0.2 conf - NMS 10 0.309 0.264 0.374

Table 4.4: Rounded results for cars class. SSD with entropy test and Bayesian
SSD are represented with their best performing macro averaging entropy
threshold with respect to F1 score.

perform worse than the vanilla SSD variants (see table 4.3). With respect to the
macro averaged result, all variants perform better than the average of all classes.

The performance for cars is slightly different (see table 4.4): the vanilla SSD
variant with entropy threshold and 0.01 confidence threshold has the best F1 score
and recall. Vanilla SSD with 0.2 confidence threshold, however, has the best
precision. Both the Bayesian SSD variant with NMS and disabled dropout, and
the one with 0.9 keep ratio have a better precision (0.460 and 0.454 respectively)
than the vanilla SSD variants with 0.01 confidence threshold (0.452 and 0.453).
With respect to the macro averaged result, all variants have a better precision than
the average. The Bayesian variant without NMS and dropout also has a better
recall and F1 score.
The best F1 score (0.288) and recall (0.251) for the chairs class belongs to vanilla

SSD with entropy threshold. Precision is mastered by Bayesian SSD with NMS
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Forward max Recall Precision
Passes F1 Score at max F1 point

vanilla SSD - 0.01 conf 0.287 0.251 0.335
vanilla SSD - 0.2 conf 0.283 0.242 0.341

SSD with entropy test - 0.01 conf 0.288 0.251 0.338
Bay. SSD - no DO - 0.2 conf - no NMS 10 0.172 0.168 0.178

no dropout - 0.2 conf - NMS 10 0.280 0.229 0.360
0.9 keep ratio - 0.2 conf - NMS 10 0.274 0.228 0.343
0.5 keep ratio - 0.2 conf - NMS 10 0.240 0.220 0.265

Table 4.5: Rounded results for chairs class. SSD with entropy test and Bayesian
SSD are represented with their best performing macro averaging entropy
threshold with respect to F1 score.

Forward max Recall Precision
Passes F1 Score at max F1 point

vanilla SSD - 0.01 conf 0.233 0.175 0.348
vanilla SSD - 0.2 conf 0.231 0.173 0.350

SSD with entropy test - 0.01 conf 0.233 0.175 0.350
Bay. SSD - no DO - 0.2 conf - no NMS 10 0.160 0.140 0.188

no dropout - 0.2 conf - NMS 10 0.224 0.170 0.328
0.9 keep ratio - 0.2 conf - NMS 10 0.220 0.170 0.311
0.5 keep ratio - 0.2 conf - NMS 10 0.202 0.172 0.245

Table 4.6: Rounded results for bottles class. SSD with entropy test and Bayesian
SSD are represented with their best performing macro averaging entropy
threshold with respect to F1 score.

and disabled dropout (0.360). The variant with 0.9 keep ratio has the second-
highest precision (0.343) of all variants. Both in F1 score and recall, all Bayesian
variants are worse than the vanilla variants. Compared with the macro averaged
results, all variants perform worse than the average.

Bottles show similar performance to cars with overall lower numbers (see table
4.6). Again, all Bayesian variants are worse than all vanilla variants. The Bayesian
SSD variant with NMS and disabled dropout has the best F1 score (0.224) and
precision (0.328) among the Bayesian variants; the variant with 0.5 keep ratio has
the best recall (0.172). All variants perform worse than in the averaged results.

Last but not least the giraffe class (see table 4.7) is analysed. Remarkably, all
three vanilla SSD variants have the identical performance, even before rounding.
The Bayesian variant with NMS and disabled dropout outperforms all the other
Bayesian variants with an F1 score of 0.647, recall of 0.642, and 0.654 as precision.
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Forward max Recall Precision
Passes F1 Score at max F1 point

vanilla SSD - 0.01 conf 0.650 0.647 0.655
vanilla SSD - 0.2 conf 0.650 0.647 0.655

SSD with entropy test - 0.01 conf 0.650 0.647 0.655
Bay. SSD - no DO - 0.2 conf - no NMS 10 0.415 0.414 0.417

no dropout - 0.2 conf - NMS 10 0.647 0.642 0.654
0.9 keep ratio - 0.2 conf - NMS 10 0.637 0.634 0.642
0.5 keep ratio - 0.2 conf - NMS 10 0.586 0.578 0.596

Table 4.7: Rounded results for giraffe class. SSD with entropy test and Bayesian
SSD are represented with their best performing macro averaging entropy
threshold with respect to F1 score.

All variants perform better than in the macro averaged result.

4.3.4 Qualitative Analysis

This subsection compares vanilla SSD with Bayesian SSD with respect to specific
images that illustrate similarities and differences between both approaches. For
this comparison, a 0.2 confidence threshold is applied. Furthermore, the compared
Bayesian SSD variant uses NMS and dropout with 0.9 keep ratio.

The ground truth only contains a stop sign and a truck. The differences between
vanilla SSD and Bayesian SSD are almost not visible (see figures 4.5 and 4.6): the
truck is neither detected by vanilla nor Bayesian SSD, instead both detected a
‘potted plant’ and a traffic light. The stop sign is detected by both variants. This
behaviour implies problems with detecting objects at the edge that overwhelmingly
lie outside the image frame. Furthermore, the predictions are usually identical.

Another example (see figures 4.7 and 4.8) is a cat with a laptop/TV in the
background on the right side. Both variants detect a cat but the vanilla variant
detects a dog as well. The laptop and TV are not detected but this is to be
expected since these classes have not been trained.
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Figure 4.5: Image with stop sign and
truck at right edge. Ground
truth in blue, predictions in
red, and rounded to three
digits. Predictions are from
vanilla SSD.

Figure 4.6: Image with stop sign and
truck at right edge. Ground
truth in blue, predictions in
red, and rounded to three
digits. Predictions are from
Bayesian SSD with 0.9 keep
ratio.

Figure 4.7: Image with a cat and
laptop/TV. Ground truth
in blue, predictions in red,
and rounded to three digits.
Predictions are from vanilla
SSD.

Figure 4.8: Image with a cat and
laptop/TV. Ground truth
in blue, predictions in red,
and rounded to three di-
gits. Predictions are from
Bayesian SSD with 0.9 keep
ratio.
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5 Discussion and Outlook

First the results are discussed, then possible future research and open questions
are addressed.

Discussion

The results clearly do not support the hypothesis: Dropout sampling delivers better
object detection performance under open set conditions compared to object detection
without it. With the exception of the open set error, there is no area where dropout
sampling performs better than vanilla SSD. In the remainder of the section the
individual results will be interpreted.

Impact of Averaging

Micro and macro averaging create largely similar results. Notably, micro averaging
has a significant performance increase towards the end of the list of predictions.
This is signaled by the near horizontal movement of the plot in both the F1 versus
absolute open set error graph (see figure 4.1) and the precision-recall curve (see
figure 4.2).
This behaviour is caused by a large imbalance of detections between the classes.

For vanilla SSD with 0.2 confidence threshold there are a total of 36,863 detections
after NMS and top k. The persons class contributes 14,640 detections or around
40% to that number. Another strong class is cars with 2,252 detections or around
6%. In third place come chairs with 1352 detections or around 4%. This means
that three classes have together roughly as many detections as the remaining 57
classes combined.
In macro averaging, the cumulative precision and recall values are calculated

per class and then averaged across all classes. Smaller classes quickly reach high
recall values as the total number of ground truth is small as well. The last recall
and precision value of the smaller classes is repeated to achieve homogenity with
the largest class. As a consequence, early on the average recall is quite high. Later
on, only the values of the largest class still change which has only a small impact
on the overall result.
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variant before after after
entropy/NMS entropy/NMS top k

Bay. SSD, no dropout, no NMS 155,251 122,868 72,207
no dropout, NMS 155,250 36,061 33,827

Table 5.1: Comparison of Bayesian SSD variants without dropout with respect to
the number of detections before the entropy threshold, after it and/or
NMS, and after top k. The entropy threshold 1.5 was used for both.

Conversely, in micro averaging the cumulative true positives are added up across
classes and then divided by the total number of ground truth. Here, the effect is the
opposite: the total number of ground truth is very large which means the combined
true positives of the 57 classes have only a smaller impact on the average recall.
As a result, the open set error rises quicker than the F1 score, creating the sharp
rise of the open set error at a lower F1 score than in macro averaging. The open
set error reaches a high value early on and changes little afterwards. This allows
the F1 score to catch up and produces the almost horizontal line in the graph.
Eventually, the F1 score decreases again while the open set error continues to rise
a bit.

Impact of Entropy

There is no visible impact of entropy thresholding on the object detection perform-
ance for vanilla SSD. This indicates that the network has almost no uniform or
close to uniform predictions, the vast majority of predictions have a high confid-
ence in one class—including the background. However, the entropy plays a larger
role for the Bayesian variants—as expected: the best performing thresholds are
1.0, 1.3, and 1.4 for micro averaging, and 1.5, 1.7, and 2.0 for macro averaging. In
all of these cases the best threshold is not the largest threshold tested.
This is caused by a simple phenomenon: at some point most or all true positives

are in and a higher entropy threshold only adds more false positives. Such a
behaviour is indicated by a stagnating recall for the higher entropy levels. For the
low entropy thresholds, the low recall is dominating the F1 score, the sweet spot
is somewhere in the middle. For macro averaging, it holds that a higher optimal
entropy threshold indicates a worse performance.

Non-Maximum Suppression and Top k

Miller et al. [3] supposedly do not use NMS in their implementation of dropout
sampling. Therefore, a variant with disabled non-maximum suppression (NMS)
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has been tested. The results are somewhat as expected: NMS removes all non-
maximum detections that overlap with a maximum one. This reduces the number
of multiple detections per ground truth bounding box and therefore the false pos-
itives. Without it, a lot more false positives remain and have a negative impact
on precision. In combination with top k selection, recall can be affected: duplicate
detections could stay and maxima boxes could be removed.
The number of observations have been measured before and after the combin-

ation of entropy threshold and NMS filter: both Bayesian SSD without NMS
and dropout, and Bayesian SSD with NMS and disabled dropout have the same
number of observations everywhere before the entropy threshold. After the en-
tropy threshold (the value 1.5 has been used for both) and NMS, the variant with
NMS has roughly 23% of its observations left (see table 5.1 for absolute numbers).
Without NMS 79% of observations are left. Moreover, many classes have more
observations after the entropy threshold and per class confidence threshold than
before, which is clear since the background observations make up around 70% of
the initial observations and only 21% of the initial observations are removed. Irre-
spective of the absolute number, this discrepancy clearly shows the impact of NMS
and also explains a higher count of false positives: more than 50% of the original
observations are removed with NMS and stay without—all of these are very likely
to be false positives.
A clear distinction between micro and macro averaging can be observed: recall

is hardly affected with micro averaging (0.300) but goes down noticeably with
macro averaging (0.229). For micro averaging, it does not matter which class the
true positives belong to: every detection counts the same way. This also means
that top k will have only a marginal effect: some true positives might be removed
without NMS but overall that does not have a big impact. With macro averaging,
however, the class of the true positives matters a lot: for example, if two true
positives are removed from a class with only few true positives to begin with than
their removal will have a drastic influence on the class recall value and hence the
overall result.
The impact of top k has been measured by counting the number of observations

after top k is applied: the variant with NMS keeps about 94% of the observations
left after NMS, without NMS only about 59% of observations are kept. This
shows a significant impact on the result by top k in the case of disabled NMS.
Furthermore, with disabled NMS some classes are hit harder by top k then others:
for example, dogs keep around 82% of the observations but persons only 57%.
This indicates that detected dogs are mostly on images with few detections overall
and/or have a high enough prediction confidence to be kept by top k. However,
persons are likely often on images with many detections and/or have too low
confidences. In this example, the likelihood for true positives to be removed in
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variant after after
prediction observation grouping

Bay. SSD, no dropout, NMS 1,677,050 155,250
keep rate 0.9, NMS 1,617,675 549,166

Table 5.2: Comparison of Bayesian SSD variants without dropout and with 0.9
keep ratio of dropout with respect to the number of detections directly
after the network predictions and after the observation grouping.

the person category is quite high. For dogs, the probability is far lower. This is a
good example for micro and macro averaging, and their impact on recall.

Dropout Sampling and Observations

The dropout variants have largely worse performance than the Bayesian variants
without dropout. This is to be expected as the network was not trained with
dropout and the weights are not prepared for it.
Gal [18] shows that networks trained with dropout are approximate Bayesian

models. The Bayesian variants of SSD implemented for this thesis are not fine-
tuned or trained with dropout, therefore, they are not guaranteed to be such
approximate models.
But dropout alone does not explain the difference in results. Both variants with

and without dropout have the exact same number of detections coming out of
the network (8732 per image per forward pass). With 16 images in a batch, 308
batches, and 10 forward passes, the total number of detections is an astounding
430,312,960 detections. As such a large number could not be handled in memory,
only one batch is calculated at a time. That still leaves 1,397,120 detections per
batch. These have to be grouped into observations, including a quadratic calcu-
lation of mutual IOU scores. Therefore, these detections are filtered by removing
all those with background confidence levels of 0.8 or higher.
The number of detections per class has been measured before and after the de-

tections are grouped into observations. To this end, the stored predictions are
unbatched and summed together. After the aforementioned filter and before the
grouping, roughly 0.4% (in fact less than that) of the more than 430 million detec-
tions remain (see table 5.2 for absolute numbers). The variant with dropout has
slightly fewer predictions left compared to the one without dropout.
After the grouping, the variant without dropout has on average between 10 and

11 detections grouped into an observation. This is to be expected as every forward
pass creates the exact same result and these ten identical detections per vanilla
SSD detection perfectly overlap. The fact that slightly more than ten detections
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are grouped together could explain the marginally better precision of the Bayesian
variant without dropout compared to vanilla SSD. However, on average only three
detections are grouped together into an observation if dropout with 0.9 keep ratio is
enabled. This does not negatively impact recall as true positives do not disappear
but offers a higher chance of false positives. It can be observed in the results which
clearly show no negative impact for recall between the variants without dropout
and dropout with 0.9 keep ratio.
This behaviour implies that even a slight usage of dropout creates such diverging

anchor box offsets that the resulting detections from multiple forward passes no
longer have a mutual IOU score of 0.95 or higher.

Outlook

The attempted replication of the work of Miller et al. raises a series of questions
that cannot be answered in this thesis. This thesis offers one possible implement-
ation of dropout sampling that technically works. However, this thesis cannot
answer why this implementation differs significantly from Miller et al. The com-
plete source code or otherwise exhaustive implementation details of Miller et al.
would be required to attempt an answer.
Future work could explore the performance of this implementation when used

on an SSD variant that was fine-tuned or trained with dropout. In this case, it
should also look into the impact of training with both dropout and batch nor-
malisation. Other avenues include the application to other data sets or object
detection networks.
To facilitate future work based on this thesis, the source code will be made

available and an installable Python package will be uploaded to the PyPi package
index. More details about the source code implementation and additional figures
can be found in the appendices.
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Appendix A

Software and Source Code Design

The source code of many published papers is either not available or is of bad
quality: it is poorly documented, difficult to integrate into your own work, and of-
ten does not follow common software development best practices. Moreover, with
Tensorflow, PyTorch, and Caffe there are at least three machine learning frame-
works. Every research team seems to prefer another framework, and, occasionally,
even develops their own; this makes it difficult to combine the work of different
authors. In addition to this, most papers do not contain proper information re-
garding implementation details, making it difficult to accurately replicate their
results, if their source code is not available.

Therefore, I will release my source code and make it available as a Python
package on the PyPi package index. This makes it possible for other researchers to
simply install a package and use the API to interact with my code. Additionally,
the code has been designed to be future proof, and work with the announced
Tensorflow 2.0, by supporting eager mode.

Furthermore, it is configurable, well documented, and conforms largely to the
clean code guidelines: evolvability and extendability among others.

The code was designed to be modular: One module creates the command line
interface (main.py), another implements the actions chosen in the CLI (cli.py),
the MS COCO to SceneNet RGB-D mapping can be found in the definitions.py
module, preparation of the data sets and retrieval of data is grouped in the data.py
module, evaluation metrics have their separate module (evaluation.py), the con-
figuration is accessed and handled by the config.py module, plotting-related code
can be found in plotting.py, and the ssd.py module contains code to train the SSD
and later predict with it.

Lastly, the SSD implementation from a third party repository has been modified
to work inside a Python package architecture, and with eager mode. It is stored
as a Git submodule inside the package repository.
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Appendix B

More Figures and Data

In this chapter you can find further tables that back up some of the points in the
thesis but did not make it into it.

class number of percentage of
detections total

total 31,991 100%
persons 10,988 34.3%

cars 1,932 6%
chairs 1,791 5.6%
bottles 1,021 3.2%

cups 898 2.8%

Table B.1: Number of ground truth detections per class (top 5).

variant before after after
entropy/NMS entropy/NMS top k

Bay. SSD, no dropout, no NMS 19,014 48,484 27,707
no dropout, NMS 19,014 14,542 13,486

Table B.2: Comparison of Bayesian SSD variants without dropout with respect to
the number of detections before the entropy threshold, after it and/or
NMS, and after top k. The entropy threshold 1.5 was used for both.
The numbers are for the persons class.
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More Figures and Data

variant before after after
entropy/NMS entropy/NMS top k

Bay. SSD, no dropout, no NMS 1,011 1,785 1,458
no dropout, NMS 1,011 426 425

Table B.3: Comparison of Bayesian SSD variants without dropout with respect to
the number of detections before the entropy threshold, after it and/or
NMS, and after top k. The entropy threshold 1.5 was used for both.
The numbers are for the dogs class.
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Glossary
BGR stands for the three colour channels blue, green, and red in this order . 14

Caffe is a deep learning framework written in C++ . 12

CCTV stands for closed-circuit television or video surveillance . 1

Dirichlet distribution is named after Peter Dirichlet and a family of probability
distributions . 7

entropy describes the amount of information provided by something. More likely
events have a lower entropy than rare events. In case of classification probab-
ilities, uniform predictions contain more information than predictions with
a clear "winner" . 3, 5, 8, 9, 11–13, 15, 16, 18, 20–22, 25, 26, 34, 35

Hopfield network is a recurrent neural network. Used as "associative" memory
systems with binary thresholds. Guaranteed to converge to local minimum,
this can be the wrong one though . 6

MCBN Monte Carlo Batch Normalisation. 7

MCDO Monte Carlo Dropout. 6, 7

MLP multilayer perceptron. 6

NMS non-maximum suppression. 3, 12, 13, 15–18, 20–22, 24–27, 34, 35

OSE open set error. 3, 17, 19

pdf probabilistic density function. 5

posterior probability output of a neural network . 7, 8

RGB stands for the three colour channels red, green, and blue in this order . 14

SSD Single Shot MultiBox Detector. 3, 4, 9–28, 34, 35

vanilla is used to describe the original state of something . 3, 4, 10–13, 15–25, 27,
28
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